Welcome to the Step-By-Step Getting
Started Guide!

Feb 08, 2022

Microsoft Visual Studio

10

11

12

13

14

15

16

17

18

19

20

Install Visual Studio extension
Create calculator project

Create SpecFlow project

Create SpecFlow project - Continue
Bind the first step

Bind remaining steps

Fix implementation

Add Living Documentation

Final

Install JetBrains Rider Plugin
Create calculator project

Create SpecFlow project

Create SpecFlow project - Continue
Bind the first step

Bind remaining steps

Fix implementation

Add Living Documentation

Final

Exercise

Exercise-solution

11

17

21

27

33

37

43

45

49

55

59

63

69

75

79

83

85

87

21 Additional resources

91

CHAPTER 1

Install Visual Studio extension

10 minutes
In this step you’ll learn how to install the Visual Studio extension for SpecFlow.

SpecFlow’s Visual Studio extension not only enables the functionalities needed for testing automation, but is also
bundled with several helpful features to make the journey more intuitive.

SpecFlow’s Visual Studio extension works on Visual Studio 2017 & 2019. If you are using an older version of Visual
Studio, please upgrade to the latest version.

Installation of the extension is simple:
1- Open Visual Studio. *We use Visual Studio 2019 in this guide
2- Navigate to “Extensions Manage Extensions Online *“ and search for “SpecFlow” in the search bar.

3- Hit Download to begin the installation. You will need to restart Visual Studio for the installation to complete:

Welcome to the Step-By-Step Getting Started Guide!

Manage Extensions
b Installed
4 Online

4 Visual Studio Marketplace
Search Results
P Controls
b Templates
b Tools

b Updates

b Roaming Extension Manager

Change your settings for Extensions

Sort by:

Relevance v

low

SpecFlow for Visual Studio 2019 -
SpecFlow integration for Visual Studio 2019. Created By: SpecFlow Team

Version: 2019.0.95.11469

Deveroom for SpecFlow (Visual Studio 2019)

Visual Studio extension for working with SpecFlow projects and Gherkin
feature files.

Spex [Preview]
SpecFlow (Features) sync to Azure DevOps (TestCases)

Azure DevOps Test Connector
A Visual Studio extension allowing users to link Test Classes and
SpecFlow Feature files with Azure DevOps Test Plans/Suites and Cases...

Cholula
C# Asp.Met Core 3.1 Solution builder,
Containing a WebApi project

Installs: 198263

Pricing Category: Free
Rating: (28 Votes)
Meore Information

Report Extension to Microsoft

Scheduled For Install:

Mone

Scheduled For Update:

Mone

Scheduled For Uninstall:

Mone

Once the extension is successfully installed, you can see it in the list of “Installed” extensions in the “Extensions
Manage Extensions” dialog of Visual Studio.

Chapter 1. Install Visual Studio extension

Welcome to the Step-By-Step Getting Started Guide!

Manage Extensions
4 |nstalled

All
Controls
Templates
SDKs
Tools
Search Results
b Online
b Updates

b Roaming Extension Manager

Change your settings for Extensions

Sort by: Most Recent v

SpecFlow for Visual Studio 2019
SpecFlow integration for Visual Studio 2019,

Uninstall

low

Release Notes

More Infermation

Getting Started
Automatically update th

T >
x[
Created By: SpecFlow Team
Date Installed: 15/07/2021
Version: 2019.0.95.11469
is extension

Scheduled For Install:

Mone

Scheduled For Update:

Mone

Scheduled For Uninstall:

Mone

In the next steps you’ll create a simple application that will be used throughout this guide.

Welcome to the Step-By-Step Getting Started Guide!

4 Chapter 1. Install Visual Studio extension

CHAPTER 2

Create calculator project

10 minutes

In this step you’ll create the application that will be tested, also called System Under Test (SUT). The application will
be a simple calculator in a C# class library.

1- Open Visual Studio and create a new C# class library by selecting “Create a new project” from the Visual Studio
startup dialog:

Welcome to the Step-By-Step Getting Started Guide!

Visual Studio 2019

Open recent Get started

¥_ Clone a repository

Get code from an online repository like GitHub or
Azure DevOps

0@ Open a project or solution

Open a local Visual Studio project or .sln file

- Open a local folder

Mavigate and edit code within any folder

E;*-

Ly

Create a new project

Choose a project template with code scaffolding
to get started h

Continue without code =

2- Search for “Class library core” and select the “C# Class Library (.NET Core)” project template and click

6 Chapter 2. Create calculator project

Welcome to the Step-By-Step Getting Started Guide!

Create a new
project

Recent project templates

A list of your recently accessed templates will be
displayed here.

Next.

O
x|
‘ class library cor Clear all
All languages - All platforms - All project types -
Hi'g Class Library .NET Core) 5 =
e A project for creating a class library that targets MET Core.
c# Linux macOs Windows Library
ni'!n Class Library (.MET Core)
&8 4 project for creating a class library that targets MET Core.
Visual Basic Linux macO5s Windows Library
QEF!" Class Library (.MET Core)
& A project for creating a class library that targets MET Core.
F# Lirux macOs Windows Library
Hi‘g Class Library (.MET Standard)
i A project for creating a class library that targets \NET Standard.
c# Android i0s Lirus macOs Windaows Library
DT!B Class Library (\MET Standard)
&8 4 project for creating a class library that targets MET Standard.
Next

3- Enter the project name as “SpecFlowCalculator”, choose a location to save the project and hit Create. In this

scenario the solution will be saved to C: \work.

Welcome to the Step-By-Step Getting Started Guide!

Configure your new project

Class Library (NET Core) © Llinux mac0S Windows Library

Project name

SpecFlowCalculator

Location

C:oworld -

Solution name i)

SpecFlowCalculator

D Place solution and project in the same directory

> Note: Do NOT use any special characters in your project name e.g. (parenthesis). This will result in build errors
from the code generated by SpecFlow.

*Solution name automatically updates to project name, leave it as is.

4- Rename Classl.cstoCalculator.cs and overwrite the content with the following code :

using System;

namespace SpecFlowCalculator
{
public class Calculator
{
public int FirstNumber { get; set; }
public int SecondNumber { get; set; }

public int Add()
{

throw new NotImplementedException();

8 Chapter 2. Create calculator project

Welcome to the Step-By-Step Getting Started Guide!

ﬂ File Edit View Project Build Debug Test Analyze Tools Extensions Window Help el Spec...ator = | o4
S| = o - B-o W 9 - - Debug - AnyCPU - b SpecFlowCalculator -~ & - | LiveShare &
§ Calculator.cs 4 3 ~ # Solution Explorer cw X
g SpecFIowCaIcuIator - ‘[:SpecFIDWCaIcuIator.CaIcuIator ~ | M SecondNumber - & m - Y@ -5 & r@ ﬁ "
=2 1 using System; ; 5
5 5 Search Solution Explorer (Ctrl+;) P~
m
- 3 Flnamespace SpecFlowCalculator 2] Solution 'SpecFlowCalculator (1 of 1 project)
g" 4 { 4 [c#] SpecFlowCalculator
= ore : b =a Dependenci
2 Z B §ub11c class Calculator b c: CEICTHE‘:IC‘:S

7 int FirstNumber { get; set; } %

8 public int SecondNumber { get; set; }

9

18 El public int Add()

11 {

12 throw new NotImplementedException();

13 L }

14 L T

= i Properties

- [Eln | #
100% - No issues found - 1 4 Ln:15 Ch:2 SPC CRLF
Cutput

Show output from: Package Manager

Time Elapsed: ©0:88:88.2885433
== Finished =

4 Add to Source Control =

5- Now build the solution by navigating to “Build Build Solution” You will see a “Build : 1 Succeeded” message in
the output window:

Welcome to the Step-By-Step Getting Started Guide!

w File Edit View Project Bug Debug Test Analyze Tools Extensions] Window Help w P Spec...ator = | o4
- o -) 22 Build Solution Ctrl+5hift+B -] B SpecFlowCalculator ~ | H ; |2 Live Share &
Rebuild Solution
§ Calculator.cs 4 X Clean Solution ~ # Solution Explorer ¥ I Xx
g [e#] SpecFlowCalculator Run Code Analysis on Solution Alt+F11 r - ¥ &e- -5 E—|T| y "
=2 1 using System; I a . .
g 2 Ctrl+B Search Solution Explorer (Ctrl+;) P~
m
- 3 [Flnamespace Spe 3] Solution 'SpecFlowCalculator' (1 of 1 project)
g" 4 { 4 [c#] SpecFlowCalculator
g 5 & ‘UTJllC czl b =0 Dependencies
s ? b c* Calculator.cs
Batch Build...
7 Configuration Manager... | |
8 int SecondNumber { get; set; }
9
18 El public int Add()
11 {
12 throw new NotImplementedException();
13 | }
14 L T
= L3 Properties * o x
SpecFlowCalculator Solution Properties -
- EEn
100% - @ MNo issues found - 1 4 Ln:15 Ch:2 SPC CRLF | E Misc rs
(Name) SR
= Active confi Debug|Any CPU
Show output from: Build - £ 1 Sl uglAny
dm=e=== Build started: Project: SpecFlowCalculator, Configuration: Debug Any CPU --- Description
. Ject: =P - & : E o - Path C\work\SpecFlowCalcul; ¥

1>SpecFlowCalculator -> C:\work\SpecFlowCalculator\SpecFlowCalculatoribin\Debuginetcc
==========Build: 1 succeeded, @ failed, 8 up-to-date, @ skipped ========== {(Name)

+ The name of the solution file.

[J Build succee... 1 Addto Source Control « &5

The calculator application is now built. In the next step you’ll learn how to create a SpecFlow project.

10 Chapter 2. Create calculator project

CHAPTER 3

Create SpecFlow project

5 minutes
In this step you’ll create a SpecFlow project and add it to the existing calculator solution:

1- Right-click the solution item “Solution ‘SpecFlowCalculator’ (1 of 1 project)” under the Solution Explorer and
select the “Add New Project...” menu item.

11

Welcome to the Step-By-Step Getting Started Guide!

ﬂ File Edit View Project Build Debug Test Analyze Tools Extensions Window Help w P Spec...ator = | o4

003

(< B W - - Debug ~ AnyCPU = P SpecFlowCalculater ~ 5 = |/ Live Share o

§ Calculator.cs 4 X Sl Solution Explorer ¥ I Xx
g [&#] SpecFlowCalculator ~| #3 SpecFlowCalculator.Calculator ~| ¥ SecondNumber -+ el -5 F y Y
= 1 using System; - . N
3 5 Search Solution Explorer (Ctrl+;) P~
m
- 3 Flnamespace SpecFlowCalculator
8_' 4 { 1% Build Solution Ctrl+Shift+B
T Ore nces . .
2 5 =) public class Calculator Eebiikdolbion
6 1 Clean Solution
7 public int FirstNMumber { get; set; } b Eens) i '
Ore = Batch Build...
2 int SecondNumber { get; set; } Configuration Manager...
Ore = &% Manage MuGet Packages for Solution...
i? Bl ?“bllc int Add() [Restore NuGet Packages
12 throw new NotImplementedException(); New Solution Explorer View
13 T
w [N I :
15 L} Existing Project... *3 Add Solution te Source Contral...
Existing Web 5ite... .
a3 Newltem... Ctrl+Shift+A Rename F2
1M00% - Mo issues found * isti i
0 Existing ltem... Shift+Alt+A Copy Full Path
Output . %2 Mew Solution Folder S
LEBLEE ’ ¢* Open Folder in File Explorer
Show output from: Build Installation Configuration File Save As Solution Filter
13------ Build started: Project i . Hide Unloaded Project:
1»SpecFlowCalculator -> C:\work @ New EditorCanfig -
== == Build: 1 succeeded, @ failed, @ up-to-date, @ skipped Properties Alt+Enter
- TRE aime O TheE SOTUTior TIie,
4 .4

4 Add to Source Control =

2- Search for “SpecFlow”, select the “SpecFlow Project” template and click

12 Chapter 3. Create SpecFlow project

Welcome to the Step-By-Step Getting Started Guide!

Next.

Add a new

project

Recent project templates

L SpecFlow Project

c#

| x

Clear all

All languages - All platforms - All project types -

SpecFlow Project

A project template for creating executable specifications with SpecFlow. You can
choose from different .NET framewaorks and test frarmeworks,

c# Windows Linux macOs Test

Mot finding what you're locking for?
Install more tools and features

3- Enter the project name “‘SpecFlowCalculator.Specs”. Keep the suggested location (the solution folder) and click

13

Welcome to the Step-By-Step Getting Started Guide!

Configure your new project

SpeCHOW Project C# Linux macOS Windows Test

Project name

SpecFlowCalculator.Specs

Location

ChworkhSpecFlowCalculator

Create.

> Note: Do NOT use any special characters in your project name e.g. (parenthesis). This will result in build errors
from the code generated by SpecFlow.

4- On this next screen you can configure the Test Framework (Runner) you want to use. We are using xUnit in this
tutorial, but you may choose a different unit test runner if you a have particular preference. Hit Create once you have
made your selection.

14 Chapter 3. Create SpecFlow project

Welcome to the Step-By-Step Getting Started Guide!

Create a new SpecFlow project

Framewaork

NET 6.0

Test Framework:

Add FluentAssertions library

Back

5- Visual Studio will now create the new SpecFlow project and resolve the NuGet packages in the background. You

should see the new SpecFlow project in the Solution Explorer as per below:

15

Welcome to the Step-By-Step Getting Started Guide!

WINDOW HELP

SpecHowCalcu...r.Specs.csproj = X
Fl<Project Sdk="Microsoft.MET.Sdk">

[l <PropertyGroup>

n EILE EDIT VIEW GIT PROJECT BUILD DEBUG TEST AMALYZE TOOLS EXTENSIOMS

® - 'ﬁﬂ = - - Debug ~ AnyCPU ~ P SpecFlowCalculator ~ [>

Al Solution Explorer * 0 X

<TargetFramework=net6.8</TargetFramework=

<Nullable=enable</Nullable=

<ImplicitUsings=enable</ImplicitUsings>
</PropertyGroup>

EFl <ItemGroup>
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.0,
<PackageReference Include="SpecFlow.Plus.LivingDocPlugin" Versior
<PackageReference Include="SpecFlow.xUnit" Version="3.9.4@" />
<PackageReference Include="xunit" Version="2.4.1" />
<PackageReference Include="xunit.runner.visualstudio" Version="2|
<PackageReference Include="FluentAssertions" Version="6.2.0" />

</ItemGroup>

smiojdxgise) xogpoo] Jsaiojdxg seadag

F <ItemGroup>
<Folder Include="Drivers\" /=
<Folder Include="Support\" />
</ItemGroup>

| </Project>

100% ~ @ No issues found 4 » Ln:1 Ch:1l
Find Results Error List... Qutput

Spec...ator — O =

; & LiveShare &/

g -CHE
Search Solution Explorer (Ctrl+) R -

3 Sclution 'SpecFlowCalculator' (2 of 2
[c&]_SpecFlowCalculato
T3 SpecFlowCalculator.5pecs

[k o1 U'epende £
£ Drivers

b [Features

b £ StepDefinitions

1 Support

c# |mplicitUsings.cs

4 L4
Solution Explorer | Git Changes

Properties - w1

SpecFlowCalculator.Specs Project Prog -

(=] | &

El Misc &
File Name SpecFlowCalculatol
Full Path ChUsershanwil\sou

Project Folder Ch\Users\anwil\sou -

File Name
Mame of the project file.

In the next step you will learn how to add a project reference and how to use the test explorer.

16 Chapter 3. Create SpecFlow project

CHAPTER 4

Create SpecFlow project - Continue

5 minutes

You will now add a project reference to the “SpecFlowCalculator” class library in the newly created SpecFlow project.
This is necessary because we want to test the “Calculator” class implemented in the class library in the “SpecFlow-
Calculator.Specs” project. To do this, follow the below steps:

1- Expand the project node “SpecFlowCalculator.Specs” in the Solution Explorer, right-click the “Dependencies” node
and select the “Add Project Reference. ..” menu item.

17

Welcome to the Step-By-Step Getting Started Guide!

w File Edit View Project Build Debug Test Analyze Tools Extensions Window Help w P Spec...ator = | o4

i Q- i w¥ - - Debug =~ AnyCPU - SpecFlowCalculator - : |/ Live Share o
. =
§ Calculator.cs SpecFlowCalculator.Specs.csproj i X ~ # ESIINTOE=Na ey > I x
; El<Project Sdk="Microsoft.NET.Sdk"> + NE- o-5 a0 ﬁIEI
= rs
g = <PropertyGroup> Search Solution Explorer (Ctrl+;) P~
m
f;Targe:FramE\mrkmetcoreapp3,1<fTargetFramewor‘k> [3] Solution 'SpecFlowCalculator' (2 of 2 projects)
—
g </PropertyGroup> 4 [c#] SpecFlowCalculator
g = <ItemGroup> P 4 Dependencies
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="16.5.8" b Calculator.cs
<PackageReference Include="SpecFlow.Plus.LivingDocPlugin” Ver‘sion=“3 4] SpecFlowCalculator.Specs
Link
- I Add Project Reference... I
<PackageReference Include="SpecRun.SpecFlow” Version="3.4.19" /> = =
= Add Shared Project Reference...
) Add COM Reference...
t"?b Add Connected Service
i Manage NuGet Packages...
Scope to This %
E New Selution Explorer View .
<PackazeReference Include="FluentAssertions™ Version="5.18.3" /> - E,], »
100% - ® Mo issues found 1 4 Ln: 17 Ch:5 SPC CRLF
Cutput
Show output from: Build - E "
13------ Build started: Project: SpecFlowCalculator, Configuration: Debug Any CPU -- &

1>SpecFlowCalculator -> C:\work\SpecFlowCalculator\SpecFlowCalculatoribin\Debuginetc
= == Build: 1 succeeded, @ failed, @ up-to-date, @ skipped

[] This item do...

4 Add to Source Control =

2- In the “Reference Manager” dialog check the “SpecFlowCalculator” class library and click OK.

18 Chapter 4. Create SpecFlow project - Continue

Welcome to the Step-By-Step Getting Started Guide!

Reference Manager - SpecFlowCalculator.5pecs ? *
4 Projects Search (Ctrl+E) P
Solution Name:
SpecFlowCalculator C\work\SpecFlowCalculator\SpecFlowCalculator\5... EESWY R e N Frey
b Shared Projects
b COM
b Browse
| Browse... | | oK | | Cancel |

Now the solution is set up with a class library containing the implementation of the calculator and a SpecFlow project
that contains the specification and tests of the calculator.

3- Now build the solution. You should see the “Build : 1 succeeded” message in the output window. *Refer to page 2
step 6 of this guide if you cannot recall how to build the solution.

4- Open the test explorer dialog from the menu “Tests Test Explorer”.

19

Welcome to the Step-By-Step Getting Started Guide!

w File Edit View Project Build Debug
Eifo. iﬁ.d Hdﬂ - ~ Debug
=] I

§ SpecFlowCalculator.Specs.csproj & X Calculator.e
= El<Project Sdk="Microsoft.NET.Sdk">
g
=] El <PropertyGroup>
e <TargetFramework>netcoreapp3.l<
g—i </PropertyGroup>
T
2 El <ItemGroup>

100% - @ MNo issues found 1

Show output from: Build

Test Analyze

»

Tools Extensions

Run All Tests

Debug All Tests

Configure Run Settings

Window

Help
Ctrl+R, A

Processor Architecture for AnyCPU Projects

B

Test Explorer I

o]

s

Options...

Ctrl+E, T

o

Ctrl+R, Ctri+A

-

Spec...ator O b

|& Live Share

plorer

at B -

B-5 @ ﬁE

ution Explorer (Ctrl+;)

tion 'SpecFlowCalculator' (2 of 2 projects)
pecFlowCalculator
i Dependencies

¢<PackageReference Include="Microsoft.NET.Test.Sdk™ Version="16.5.8"
<PackageReference Include="SpecFlow.Plus.LlivingDocPlugin™ Version="3

<PackageReference Include="SpecRun.SpecFlow" Version="3.4.19" />

<PackazeReference Include="FluentAssertions™ Version="5.1@.3" />

» Ln: 17 Ch:5

- ©

4

* Calculator.cs

4 [T SpecFlowCalculator.Specs

- P 40 Dependencies
- Drivers
i-r 3 Features
. Hooks
- b 1g SpecFlowPlusRunner
4 Steps
Properties -

T BN F
SPC CRLF Elf:
Output * 0 x

ra

LA WWUNMR A DPELr LUNWL AL LU Ld LU\ DPELr LUWLG LU Ld LUl DPELS \ IUELI LUNLAdLLULG LU . DPELS L LOPTY -
1»SpecFlowCalculator.Specs -» C:\work\SpecFlowCalculator\SpecFlowCalculator.Specsibi
1>Done building project “SpecFlowCalculator.Specs.csproj”.

Build: 1 succeeded, @ failed, 1 up-to-date, @ skipped

2,

4 Add to Source Control =

5- You should see a test already added to the SpecFlow project by the project template. Run the test using the “Run
All Tests in View” icon. Note that the outcome/status of the test remains “Not Run” as the test has not executed yet.

> -

0 |41]60]00[01] 8-k

a £ -

7] Run All Tests In View (Cirl+R,)

4 L1) SpectiowCalculator.specs (1)
4 0 SpecFlowCalculator.Specs (1)
4 0 Calculator (1)

0 Add two numbers in Calculator

Duration

Traits Error Message

mytag

Search Test Explorer

o~
Group Summary

SpecFlowCalculator..
Tests in group: 1

Outcomes
@ 1 not Run

In the next step you will learn how to automate your first scenario.

20

Chapter 4. Create SpecFlow project - Continue

CHAPTER B

Bind the first step

10 minutes
In this step you’ll bind your first step (automate your first scenario step with SpecFlow).

*If you skipped the previous page make sure you execute the tests with your

preferred runner. The test explorer would look like below (see the dura-
tion in milliseconds), but it does not do much yet and shows the “Skipped” sta-
Test Explorer *Aax
»-C'o |&1|O0o]|Qofa| B[& - Seasch Test Explover P~
Test Duration Traits Error Message Group Summary
! SpecFlowCalculator.Specs (1) 167 ms SpecFlowCalculator.

Tests in group: 1
@ Total Duration

Qutcomes
! 1 Skipped
tus. S L
1- Open the Calculator.feature file by double-clicking it in the
Solution Explorer (SpecFlowCalculator.Specs Features Calculator.feature)

21

Welcome to the Step-By-Step Getting Started Guide!

Da File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help Search (Ctrl.. 2 Spec...ator = O ®
| . R Debug ~ AnyCPU - p SpecFlowCalculator = o L & LiveShare &7
§‘ Calculatorfeature & X Al Solution Explorer > 1 x
E_‘ 1 Feature: Calculator + GF o-5 9@ ﬁE
° 2 IfCalculator](https://specflow.org/wp-content/uploads/2028/89/calculator.png) . . -
E 3 In order to avoid silly mistakes Search Solution Explorer (Ctrl+;) P~
_ a As g math novice 2] Solution 'SpecFlowCalculator' (2 of 2 projec
g 5 I *want® to be told the **sum** of ***two*** numbers g SpecFlowCalculator
g 6 b i Dependencies
2 6
7 Link to a feature: [Calculator](SpecFlowCalculator.Specs/Features/Calculator.fe P e Calculator.cs
& ***Fyrther read***: **[lLegrn more about how to genmerate Living Documentation](h 4[] SpecFlowCalculator.Specs
o b =0 Dependencies
18 @mytag Dirivers
11 =I5cenario: Add two numbers —_ - ealures
12 Given the first number is 5@
OOKS
13 And the second number is 78 b SpecFlowPlusRunner
14 When the two numbers are added b = Sfeps
15 Then the result should be 128
-
110% - % Mo issues found 1 s Ln:15 Ch:31 Colk 34 TABS CRLF 1 4

1 Addto Source Control = &,

The purpose of this feature file is to document the expected behavior of the calculator in a way that it is both human-
readable and suitable for test automation. SpecFlow uses the Gherkin language where you can phrase the scenarios
using Given/When/Then steps. Currently there is a single scenario (automatically added by the SpecFlow project
template) that describes how adding two numbers should work with the calculator.

Here is a closer look at the Gherkin scenario used in this template:

Scenario: Add two numbers
Given the first number is 50
And the second number is 70
When the two numbers are added
Then the result should be 120

Based on the scenario text, SpecFlow generates an automated test that executes the scenario. However, it is not yet
defined what the steps of the scenario should actually “do”.

2- Right-click the first Given step “Given the first number is 50” and select either the “Go To Definition” or the “Go To

22 Chapter 5. Bind the first step

Welcome to the Step-By-Step Getting Started Guide!

o Fie
15|

¥0qjoo] Jai0|dx3 Janag

110%

Step Definition” command 2RSS

Visual Studio locates the step definition (binding) that belongs to this step.

Calculator.feature & X -

Edit View Git Project Build Test Tools Extensions Window Search (Ctrl... 2

n io-o|B-sEM|9-C-

Debug Analyze Help Spec...ator =

i
[t

Debu - Any CPU ~ P SpecFlowCalculator ~
g9 y B A

Solution Explorer -

1 Feature: Calculator + @ -5 Al
2 fCalculator](https://specflow.org/wp-content/uploads/2828/89/calculator.png) . -
3 In order to avoid silly mistakes Search Solution Explorer (Ctrl+;)
A As a math novice 3] Solution 'SpecFlowCalculator
5 I *want* to be told the **sum** of **Ftwo*** numbers < SpecFlowCalculator
6 P & Dependencies
7 Link to a feature: [Calculator](SpecFlowCalculator.Specs/Features/Calculator.fe b Calculator.cs
8 ***Further read***: **[lLearn more about how to generate Living Documentation](h 4 B SpecFlowCaleulator.Specs
9 P =@ Dependencies
10 @mytag i1 Drivers
11 =scenario: Add two numbers “ b [f__e]at(;lesm e
12 Given the first number is 58 | T calon oo
ooks
13 and the second number is 78 Rename... Cirl+R, Ctrl+R b SpecFlowPlusRunner
|
14 When the two numbers are added I.,. Go To Definition 2 b Steps
15 Then the result should be 129
Breakpoint 3
& Run To Cursor Ctrl+F10
¥ Cut Ctrl+X
ull Copy Ctrl+C
Annotation 3
Qutlining 3
Generate Step Definitions
Go To Step Definition Ctrl+Shift+Alt+5
-
d @ Mo issues found 1 4 Ln:12 Ch:30 Col33 TABS CRLF 1

In this example, it opens the

CalculatorStepDefinitions class and jumps to the GivenTheFirstNumberIs method.

23

Welcome to the Step-By-Step Getting Started Guide!

w File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Search (Ctrl+Q) R Spec...ator = O *
EfE == A ; G - [t " - Q' - Debug - AnyCPU - ; & Live Share -
§ CalculatorStepDefinitions.cs & SpecFlowCalculator.Specs.csproj Calculator.cs Calculatorfeature 3 X « ##
E‘ mSpe(F\owCaIcuIator.Spec; - *3 SpecFlowCalculator.Specs Steps.CalculatorStepDefiniti - @, ccenarioContext - %
z 4 { a
o 5 [Binding]
ca_.| 6 =] public sealed class CalculatorStepDefinitions 1
g 7 {

8 |l

] // For additional details on SpecFlow step definitions see https://go.specflow.org/doc-stepdef]

1@

11 private readonly ScenarioContext _scenarioContext;

12

0 refe es -

13 = public CalculatorStepDefinitions(ScenarioContext scenarioContext)

14 i

15 _scenarioContext = scenarioContext;

16 1

17 I

18 [Given("the first number is (.*)")] o

0 refe es

19 = public void GivenTheFirstNumberIs(int number})

20 {

21 //TODO: implement arrange (precendition) logic

22 // For storing and retrieving scenario-specific data see https://go.specflow.org/doc-sharingdata

23 // To use the multiline text or the table argument of the scenario,

24 // additional string/Table parameters can be defined on the step definition

25 [/ method.

26

27 _scenarioContext.Pending();

28 L H o

M - Mo issues found ¥ 4 L4 Lmd Chil

*The step definition is located based on the [Binding] attribute on the class and the [Given] attribute on the
method. The regular expression of the Given attribute matches the text of the scenario step.

3- Add the below field to the class to instantiate the calculator that we want to test and created in Step 2 of this guide
(SUT).

private readonly Calculator _calculator = new Calculator();

4- Replace the implementation of the first step definition method with the below code which sets the first number of
the calculator.

[Given ("the first number is (.*)")]
public void GivenTheFirstNumberIs (int number)

{

_calculator.FirstNumber = number;

24 Chapter 5. Bind the first step

Welcome to the Step-By-Step Getting Started Guide!

w File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Search (Ctrl+ Q) P Spec...ator = O b4
ierE| == | M e~ F-2 W 9 - Debug - AnyCPU |2 & LiveShare 7
s\{‘ CalculatorStepDefinitions.cs 4 pecFlowCalculator.Specs.csproj Calculator.cs Calculatorfeature 3 X - #t
E, mSpe(FIowCaIcuIator‘Specs - *3 SpecFlowCalculator.Specs.Steps. CalculatorStepDefiniti - % _calculator -|$
E 8 // For additional details on SpecFlow step definitions see https://go.specflow.org/doc-stepdef -
g 9
= 18 private readonly ScenarioContext _scenarioContext;
E 11
& 124" I private readonly Calculator _calculator = new Ca]culator‘();l i1
13
0 references
14 = public CalculatorStepDefinitions(ScenarioContext scenarioContext)
15 { L
16 _scenarioContext = scenarioContext;
17 o
18
19 [Given("the first number is (.*)")]
0 references
20 = | public void GivenTheFirstNumberIs(int number)
21 { 1
22 _calculator.Firstlumber = number;
23 }
24 |
25 [Given("the second number is (.*)")]
0 references
26 = public void GivenTheSecondNumberIs(int number
27 i
28 //TODO: implement arrange (precondition) logic
29 // For storing and retrieving scenario-specific data see https://go.specflow.org/doc-sharingdata
38 // To use the multiline text or the table argument of the scenario,
31 // additional string/Table parameters can be defined on the step definitioen .
115 % = Noissuesfo‘uJHd o & v 4 b Ln: 12 Ch: 68 SPC CRLF

[] Ready # Addto Source Control = !3

5- Execute the test in the Test Explorer and click “Open additional output for this result” from the right

Test Explorer *0OXx
r-F's |ﬂ1 |00|m0| 1 | BH-[kE a & - Search Test Explorer P -
Test Duration Traits Test Detail Summary
4 4 SpecFlowCalculator.5pecs (1) 123 ms ! Add two numbers in Calculator
4 8 SpecFlowCalculator.Specs (1) 123 ms Source: Calculator.feature line 11
4 & Caleulator (1) 123 ms © puration: 123 ms
! Add two numbers 123 ms mytag [Open additional output for this result
4 4 4 4

pane.

In the detailed output you can see that the first step “Given the first number is 50” has been matched to the step
definition method “CalculatorStepDefinitions.GivenTheFirstNumberls” as expected, and it has been called with the
argument 50. The done status means that the step executed successfully with no errors:

25

Welcome to the Step-By-Step Getting Started Guide!

Given the first number is 50
-> done: CalculatorStepDefinitions.GivenTheFirstMumberls(50) (0.0s)

The next step in the scenario is pending, as we have not yet implemented it:

And the second number is 70
-» pending: CalculatorStepDefinitions.GivenTheSecondMumberls(70)

In the next step you will bind the rest of the scenario steps.

26

Chapter 5. Bind the first step

CHAPTER O

Bind remaining steps

10 minutes
In this step you’ll bind the remaining steps of the scenario.

1- Similar to the previous page , navigate to the bindings from the feature file by right-clicking the second Given step
“And the second number is 70” and select either the “Go To Definition” or the “Go To Step Definition” command.
Alternatively you can open the CalculatorStepDefinitions.cs directly.

2- Implement the binding of the second step “And the second number is 70” by replacing the code of the
GivenTheSecondNumberIs method with the below:

[Given ("the second number is (.x)")]
public void GivenTheSecondNumberIs (int number)
{

_calculator.SecondNumber = number;

}

27

Welcome to the Step-By-Step Getting Started Guide!

” File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Search (Ctrl+ Q) P Spec...ator = O *
imE =% A i@~ i3 -2 W 9 - - Debug - AnyCPU -| 2 & LiveShare &7
§ [N B GIn S Tyl SpecFlowCalculator.Specs.csproj Calculator.cs - 3
ﬁ_‘ I SpecFlowCalculator.Specs ~ * SpecFlowCalculator.Specs.Steps.CalculatorStepDefiniti ~ @ GivenTheSecondMumberls(int number) ME3
4
= 9 -
E 10 private readonly ScenarioContext _scenaricContext;
5 11
= 12 private readonly Calculstor _calculator = new Calculator();
8 13

14 = public CalculatorStepDefinitions{ScenarioContext scenarioContext)

15 {

16 _scenarioContext = scenarioContext;

17 } -

18 |

19 [Given("the first number is (.*)")]

0 references

20 = public void GivenTheFirstNumberIs(int number)

21 { .

22 _calculator.FirstNumber = number;

23 T

22

25 [Given("the second number is (.*)")]

0 refere 5

26 = public void GivenTheSecondNumberIs(int number)

274" {

28

29 _calculator.SecondNumber = number;

30

31 ¥

32 I .

115% =] ONoissuesfour;&lju o @1" <. R L Ln:27 Ch: 10 SPC CRLF

4 Add to Source Control = ?1

*We use the “And” keyword in the Gherkin scenario for better readability. The “And” keyword will be interpreted as
“Given”, “When” or “Then” depending on the previous step(s) in the scenario. In this example the “And the second
number is 70" is interpreted as a “Given” step because the previous step is a “Given” step.

3- Next, implement the binding of the third step, “When the two numbers are added”, by replacing the code of the
WhenTheTwoNumbersAreAdded method with the below. The method must have a When attribute, as it belongs
to the “When” step in the scenario.

private int _result;

[When ("the two numbers are added")]
public void WhenTheTwoNumbersAreAdded ()

{
_result = _calculator.Add();

28 Chapter 6. Bind remaining steps

Welcome to the Step-By-Step Getting Started Guide!

” File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Search (Ctrl+ Q) P Spec...ator = O *
MIE =2 A il Bt W™ 9D - - Debug - AnyCPU -2 |8 Live Share &7
§ [N GTn S Tyl - el SpecFlowCalculator.Specs.csproj Calculator.cs v i
ﬁ_‘ I SpecFlowCalculator.Specs ~ * SpecFlowCalculator.Specs.Steps.CalculatorStepDefiniti ~ @ GivenTheFirstNumberls(int number) ME3
- 12 private readenly Calculator _calculator = new Calculator(); -

2 13
o 14 I private int _result; I
= i
Q
% 15 =] public CalculatorStepDefinitions(ScenaricContext scenarioContext)
2 16 { .
17 _scenarioContext = scenarioContext;
18 L ¥
19
20 [Given("the first number is (.*)"}] 1
21 El public veid GivenTheFirstNumberIs(int number)
22 {
234" _calculator.Firstiumber = number;
24 L }
25
26 [Given("the second number is (.*)")] -
27 =] public void GivenTheSecondNumberIs(int number)
28 {
29
38 _calculator.Secondiumber = number;
31
32 | }
33
34 [When("the two numbers are added")]
35 B public void WhenTheTwoNumbersAreAdded()
36 {
37
38 _result = _calculator.Add();
39
48 L } -
100% - @ No issues found 3 =] » Ln:23 Ch:46 SPC CRLF

1 Add to Source Control = ?1

This implementation calls the Add method of the calculator. Note that the result of the addition is not stored by the
calculator in a property/field but it is returned to the caller. It’s a good idea to store the returned value in a field so that
we can work with the result afterwards.

4- Implement the binding of the last step, “Then the result should be 1207, by replacing the code of the
ThenTheResultShouldBe method. The method must have a Then attribute, as it belongs to a “Then” step
in the scenario.

Add a namespace using for FluentAssertions at the top of the file:

using FluentAssertions;

Use the below code for implementation of the “Then” step which validates if the result of the addition matches the
expected value (using the FluentAssertions library).

[Then ("the result should be (.*)")]
public void ThenTheResultShouldBe (int result)

{
_result.Should() .Be(result);

29

Welcome to the Step-By-Step Getting Started Guide!

w File Edit View Project Build Debug Test Apalyze Tools Extensions Window Help Search (Ctrl+ Q) Pl Spec...ator — O b4
il =2 | A e~ 3-2o WM 9~ - Debug - AnyCPU -z & LiveShare &7
'a"(‘ [N GTn S Tyl - el SpecFlowCalculator.Specs.csproj Calculator.cs - 3
E, I SpecFlowCalculator.Specs ~| * SpecFlowCalculator.Specs.Steps.CalculatorStepDefiniti || @ WhenTheTwoNumbersAreAdded() ME3
= == = PUDE e O GO TS GO L T TGO Ty "
5 23 {
= 24 _calculator.Firstiumber = number;
= 25 L }
o 26
E— 27 [Gi.ven("the second number is (.*)"})] -
23 = public void GivenTheSecondNumberIs(int number)
29 {
38
31 _calculator.SecondNumber = number;
3z
33 L }
34
35 [When("the two numbers are added")]
36 =]
37 {
38
39 _result = _calculator.Add();
48 W
41 -
42
43 [Then("the result should be (.*)")]
= q public void ThenTheResultShouldBe(int result)
45 {
46 _result.Should().Be(result);
47 }
43 }
49 }
58
b
100% - Mo issues found ¥ - 4 4 Ln:50 Ch:1 SPC CRLF

After implementing all step definitions and cleaning up the file you should have the following code:

using FluentAssertions;
using TechTalk.SpecFlow;

namespace SpecFlowCalculator.Specs.Steps

{
[Binding]
public sealed class CalculatorStepDefinitions

{
// For additional details on SpecFlow step definitions see https://go.
—specflow.org/doc—stepdef

private readonly ScenarioContext _scenarioContext;

private readonly Calculator _calculator = new Calculator();
private int _result;

public CalculatorStepDefinitions (ScenarioContext scenarioContext)

{

_scenarioContext = scenarioContext;

[Given ("the first number is (.*)")]
public void GivenTheFirstNumberIs (int number)

{

_calculator.FirstNumber = number;

(continues on next page)

30 Chapter 6. Bind remaining steps

Welcome to the Step-By-Step Getting Started Guide!

(continued from previous page)

[Given ("the second number is (.x)")]
public void GivenTheSecondNumberIs (int number)

{

_calculator.SecondNumber = number;

[When ("the two numbers are added")]
public void WhenTheTwoNumbersAreAdded ()

{
_result = _calculator.Add();

[Then ("the result should be (.x)")]
public void ThenTheResultShouldBe (int result)
{

_result.Should() .Be(result);

5- Build the solution. The build should succeed.
6- Run the test again.

The test should execute and fail, this is expected. In the Test Detail Summary pane of Test Ex-
plorer you can see that a NotlmplementedException has been thrown in the Add method of the

Test Explorer

- -0'"s LI ==L o Search Test Explorer P~

Test Duration Traits lest Detail Summary
4 ﬁ SpecFlowCalculator.Specs (1) 140 ms Q Add two numbers in Calculator
4 SpecFlowCalculator.Specs (1) 140 ms Source: Calculator.feature line 11
4 €3 Calculator (1) 140 ms Test has multiple result outcomes
€3 Add two numbers in Calculator 140 ms mytag €3 3 Failed
-IResults

i 1) €3 Add two numbers
Duration: 118 ms

Message:
The method or coperation is not imp
£ Stack Trace:
System.NotImplementedException: Th
Calculator.Add() line 12
CalculatorstepDefinitions.WhenTheTh

BindingInvoker.InvokeBinding{IBind

TestExecutionEngine.ExecuteStepMat

calculator.

7- Click on the “Open additional output for this result” below the stack trace to see a more detailed log of the

31

Welcome to the Step-By-Step Getting Started Guide!

scenario.

Test Mame: Add two numbers
Test Qutcome: m Failed

Message: The method or operation is not implemented.

~ Standard Output

-» -> Loading plugin C\work\SpecFlowCalculator\SpecFlowCalculator.Specs\bin\Debug\netcoreapp3. 1\Living Doc.SpecFlowPlugin.dll
-» -» Loading plugin C\work\SpecFlowCalculator\SpecFlowCalculator.Specsi\bin\Debug\netcoreapp3. 1\SpecRun.Runtime.SpecFlowPlugin.dll
-» -» Using default config

Given the first number is 50
-» done: CalculatorStepDefinitions.GivenTheFirstNumberls{50) (0,1s)

And the second number is 70
-» done: CalculatorStepDefinitions.GivenTheSecondNumberls(70) (0,0s)

When the two numbers are added
-» erron The methed or operation is not implemented.

Then the result should be 120
-» skipped because of previous errors

Standard Error

The method or operation is not implemented.System.NotimplementedException: The method or operation is not implementad.

at SpecFlowCalculator.Calculator.Add() in Chwork\SpecFlowCalculator\SpecFlowCalculator\Calculator.cs:line 12

at SpecFlowCalculator.Specs.Steps.CalculatorStepDefinitions.WhenTheTwoNumbersAreAdded() in Chwork\SpecFlowCalculator
\SpecFlowCalculator.Specs\Steps\CalculatorStepDefinitions.cs:line 39

at TechTalk.SpecFlow.Bindings.Bindinglnvoker.InvokeBinding(IBinding binding, IContextManager contextManager, Object[] arguments,
[TestTracer testTracer, TimeSpand. duration) in DAa\1\s\TechTalk.SpecFlow\Bindings\Bindinglnvoker.cs:line 69

at TechTalk.SpecFlow.Infrastructure. TestExecutionEngine.ExecuteStepMatch(BindingMatch match, Object[] arguments) in D:\a\1\s
\TechTalk.SpecFlow\Infrastructure\TestExecutionEngine.csiline 514

at TechTalk.SpecRun.SpecFlowPlugin.Runtime.RunnerTestExecutionEngine.ExecuteStepMatch(BindingMatch match, Object[] arguments)

at TechTalk.SpecFlow.Infrastructure. TestExecutionEngine.ExecuteStep(IContextManager contextManager, Steplnstance steplnstance) in D:\a\1
\s\TechTalk.SpecFlowhInfrastructure\TestExecutionEngine.csline 435

at TechTalk.SpecFlow.Infrastructure.TestExecutionEngine.OnAfterLastStep() in DAa\1\s\TechTalk.SpecFlow\Infrastructure
\TestExecutionEngine.cs:line 260

at TechTalk.SpecRun.SpecFlowPlugin.Runtime.RunnerTestExecutionEngine.OnAfterLastStep()

at TechTalk.5SpecFlow.TestRunner.CollectScenarioErrors() in D:\a\1\s\TechTalk.SpecFlow\TestRunner.cs:line 60

at SpecFlowCalculator.Specs.Features.CalculatorFeature.ScenarioCleanup()

at SpecFlowCalculator Specs.Features.CalculatorFeature AddTwoNumbers() in Clwork\SpecFlowCalculator\SpecFlowCalculator.Specs

L SRS Y PR TGP SRS - | -4

You can see that the first two “Given” steps executed successfully and the “When the two numbers are added” step
failed with an error. This is because the addition method of the calculator is not implemented yet.

In the next step you’ll fix the implementation of the calculator to fix this error.

32

Chapter 6. Bind remaining steps

CHAPTER /

Fix implementation

3 minutes
In this step you’ll fix the implementation error of the calculator in the previous page.

1-Open Calculator.csinthe SpecFlowCalculator class library and replace the implementation of the Add
method with the below code:

public int Add()
{

return FirstNumber + SecondNumber;

}

33

Welcome to the Step-By-Step Getting Started Guide!

File Edit View Project Build Debug Test Analyze Tools Extensions Window Search.. 0 Spec...ator _ O %
Help
n Q- P Wl - ' - Debug =~ AnyCPU -| 2 & LiveShare &7
g CalculatorStepDefinitions.cs Calculator.cs & X SpecFlowCalculator.5pecs.csproj SRR Sclution Explorer > 1 X
m
=[] SpecFlowCalculator =| 3 SpecFlowCalculator.Calculator = SecondMumber - ¥ L | "
g (R or] % Spechion * + RE- o-sST@ K
g 5 using System; Search Solution Explorer (Ctrl+;) P~
m
- 131 Solution 'SpecFlowCalculator' (2 of 2 projects)
3 = SpecFlouCalculat >
E i __?amespace pecFlowCalculator 4 [SpecF culator
4 . b Dependencie
= 2 references
5 = public class Calculator
° t — - P @ Dependencies
2 references Dri
7 public int FirstNumber { get; set; } . Fm;ers
i N eatures
] public int SecondNumber { get; set; } 4 E]Ckalculator.feature
ooKs
9
., b Im SpecFlowPlusRunner
18 B public int Add() boEEE
11 {
12 return FirstNumber + SecondMNumber;
13 | ¥
14 | I
15 H
hd
115% - @ Mo issues found F- 1 4 Ln:15 Ch:2 SPC CRLF 1 4

+ Addto Source Control = !1

2- Build the solution. The build should succeed.

3- Run the test.The test should now execute and succeed with the green tick marks indicating no errors:

Test Explorer =
> r-C'a m LR ==L o I Search Test Explorer P -
Test Duration Traits Test Detail Summary
4 ﬂ SpecFlowCalculator.Specs (1) 136 ms ﬂ' Add two numbers im Calculator
«@ SpecFlowCalculator.5pecs (1) 136 ms Source: Calculator.feature line 11
4 @ Calculator (1) 136 ms (© puration: 136 ms
@ Add two numbers 136 ms mytag [3 Open additional output for this result
4 » | 3

4- Click on the “Open additional output for this result” to see a more detailed log of the

34 Chapter 7. Fix implementation

Welcome to the Step-By-Step Getting Started Guide!

File Edit View Project Build Debug Test Analyze Tools Extensions Window Search.. 2 Spec...ator — O 'Y
Help
Q- -2 e - - Debug =~ AnyCPU = SpecFlowCalculator - ; |/ Live Share g

CalculatorStepDefinitions.cs Calculator.cs SpecFlowCalculator.Specs.csproj

Test Name: Add two numbers
Test Qutcome: 0 Passed

~ Standard Output

¥0q|ool J4240|d¥3 SBAIRS

-» -» Loading plugin C\work\SpecFlowCalculator\SpecFlowCalculator.Specsi\bin\Debughnetcoreapp3. 1\Living Doc.SpecFlowPlugindll
-> -> Loading plugin C:\work\SpecFlowCalculator\SpecFlowCalculator.Specs\bin\Debughnetcoreapp3.1\SpecRun.Runtime.SpecFlowPlugin.dll
-» -» Using default config

Given the first number is 50
-> done: CalculatorStepDefinitions.GivenTheFirstNumberls(50) (0,0s)

And the second number is 70
-> done: CalculatorStepDefinitions.GivenTheSecondNumberls(70) (0,0s)

When the two numbers are added

-> done: CalculatorStepDefinitions. WhenTheTwoMNumbersAreAdded() (0,0s)
Then the result should be 120
-> done: CalculatorStepDefinitions. ThenTheResultShouldBe(120] (0,0s)

f Add to Source Control

scenario: LERIEE]
You can see that each step executed successfully and the test is passed.

In the next step you’ll learn how to generate living documentation.

35

Welcome to the Step-By-Step Getting Started Guide!

36 Chapter 7. Fix implementation

CHAPTER 8

Add Living Documentation

5 minutes

In this step you’ll learn how to generate a living documentation from your test execution results so you can easily
share them with your team.

> Note: If you have skipped the previous steps make sure your project tests have been executed before continuing with
this step.

37

Welcome to the Step-By-Step Getting Started Guide!

WLl Best match

Command Prompt
o W i

Vindow
e Apps
Gl Command Prompt
B Developer Command Prompt for VS App
>
2019
M Microsoft Azure Command Prompt -
> - o
v2.9 pen
Settings Lo Run as administrator
= Replace Command Prompt with > I openfile location
Windows PowerShell in the Win + X <9 pin to Start
%= Turn high contrast on or off > 3 Ppin to taskbar
= Manage app execution aliases >
[Change Narrator's keyboard layout >
Use Sticky Keys to press one key at a >
time for keyboard shortcuts
[Choose if the Narrator key is locked >
Search the web
L command - See web results >
Il © command| O i ™ ﬂ |

1- Open a command prompt.

2- Install the LivingDoc CLI as a global dotnet tool.

dotnet tool install --global SpecFlow.Plus.LivingDoc.CLI ‘

38 Chapter 8. Add Living Documentation

Welcome to the Step-By-Step Getting Started Guide!

B Command Prompt - O *

3- Navigate to the output directory of the SpecFlow project. In this example the solution was setup in the C: \work
folder.

’cd C:\work\SpecFlowCalculator\SpecFlowCalculator.Specs\bin\Debug\netcoreapp3.1

4- Run the LivingDoc CLI by using the below command to generate the HTML report.

‘livingdoc test-assembly SpecFlowCalculator.Specs.dll -t TestExecution. json ‘

E8 Command Prompt

C:\work\SpecFlowCalculator\SpecFlowCalculator. S| in\Debug\netcoreapp3.1>L ¢ test-assembly ecFlowCalculator. s.dll -t TestExecution.json
C:\work\SpecFlowCalculator\SpecFlowCalculator. S| in\Debug\netcoreapp3.1\L c.h Was sfully generated.

C:\work\SpecFlowCalculator\SpecFlowCalculator. S| in\Debug\netcoreapp3.1>,

5- Open the generated HTML with your favorite browser. The HTML file is stored in the same folder as the output
directory of the SpecFlow project.

C:\work\SpecFlowCalculator\SpecFlowCalculator.Specs\bin\Debug\netcoreapp3.1l\LivingDoc.

*Note: if you run into issues here, e.g your JSON file name is FeatureData.JSON instead of TestExecution.JSON, this
indicates you have an older version of the CLI tool. Please check our migration guide here to upgrade to the latest

39

https://docs.specflow.org/projects/specflow-livingdoc/en/latest/Guides/Generator-Migration-v3.4-v3.5.html

Welcome to the Step-By-Step Getting Started Guide!

version.

Review the living documentation of the calculator features that you have implemented. Select the “Calculator” feature
in the tree. On the right pane check the detailed description of the feature and the scenarios. You can also see the
“green” test execution result of the scenarios and steps.

= O >
@ LivingDochtml#/document/Stan X +

File | C:/work/SpecFlowCalculator/SpecFlowCalculator.Specs/bin/Debug/netcoreapp3.1/LivingDoc.htmi#/document/Standalone/fea... @ L H
<« C @ File | C:/work/SpecFlowCalculator/SpecFlowCalcul S /bin/Debug/! 3.1/LivingDoc.htmli#/d /Standalone/fi b4 v M H

SpecFlowCalculator.Specs

B3 generated Dec 1, 2020, 11:34 AM GMT+1

Living Documentation Analytics

< (@ Feature: Calculator
S Filter by Keyword Filter by

Test results e

hd SpecFlowCalculator.Specs ® 1 Passed @ O Failed 0 Others

v Features ® 1Passed @ O Failed 0 Others -

~ @ Caleulator

@ Add two numbers

In order to avoid silly mistakes
As a math idiot
| want to be told the sum of twe numbers

Link to a feature: Calculator
Further read. Learn more about how to generate Living Documentation

@ Scenario: Add two numbers 25 122m:

~" Given the first number is 50

+~ And the second numberis 70
~ When the two numbers are added

~ Then the result should be 120

Check the test result summary by clicking on the “Analytics” tab:

40 Chapter 8. Add Living Documentation

Welcome to the Step-By-Step Getting Started Guide!

= O x
@ LivingDochtml#/document/Star X +
<« Cc @ File | C/work/SpecFlowCalculator/SpecFlowCalculator.Specs/bin/Debug/netcoreapp3.1/LivingDochtml#/document/Standalone/fea.. # @ I M o

SpecFlowCalculator.Specs
B3 generated Dec 1, 2020, 11:34 AM GMT+1

Living Documentation Analytics

Features

Scenarios
100.0% 0.0% 100.0% 0.0%
1 1 0 0 1 1 0 0
PASSED FAILED PASSED FAILED
Steps
100.0% 0.0% 0.0% 0.0% 0.0%
4 4 0 0 0 0 0

PASSED FAILED SKIPPED NOT EXECUTED PENDING

Unused Step Definitions

Mo data is available

SpecFlow+LivingDoc is packed with great features that truly bring your documentation to life!

To read more about SpecFlow+LivingDoc and its features, please visit our dedicated LivingDoc documentation page.

41

https://docs.specflow.org/projects/specflow-livingdoc/en/latest/index.html

Welcome to the Step-By-Step Getting Started Guide!

42 Chapter 8. Add Living Documentation

CHAPTER 9

Final

CONGRATULATIONS!

.

You have now successfully created and tested your first SpecFlow project.
We have put together a little exercise for you to test your newly acquired skills, check it out here.

Check out our examples page if you are looking for additional sample projects. We have also put together a sample
project using Selenium for UI automation, you can find it here.

To keep up to date with the latest on SpecFlow Join the SpecFlow Community.

43

https://docs.specflow.org/en/latest/Examples.html
https://docs.specflow.org/projects/specflow/en/latest/ui-automation/Selenium-with-Page-Object-Pattern.html
https://specflow.org/community/

Welcome to the Step-By-Step Getting Started Guide!

44 Chapter 9. Final

cHAaPTER 10

Install JetBrains Rider Plugin

10 minutes

In this step you’ll learn how to install the SpecFlow for Rider plugin. SpecFlow’s JetBrains Rider plugin not only
enables the functionalities needed for testing automation, but is also bundled with several helpful features to make the
journey more intuitive.

The plugin can be found either at the JetBrains marketplace or directly from within the Rider IDE.
To install the plugin directly from JetBrains Rider:

1- Open JetBrains Rider

2- Navigate to File Settings Plugins (Ctrl+Alt+S) and search for “SpecFlow” in the search bar:

45

https://plugins.jetbrains.com/plugin/15957-specflow-support

Welcome to the Step-By-Step Getting Started Guide!

&l

W Explorer
y]

E File Edit View MNavigate Code Refactor Build Run Tests Tools VOS5 Window Help Solution2 = O

New...

Open

Save All

Reload All from Disk
Close Solution
Export

Print...

Add to Favorites
File Encoding

Line Separators
Make File Read-Only

X

. ¥ Debug|AnyCPU ¥ Add Configuration... =
»
Ctrl+Shift+5
Ctrl+Alt+Y

>

Ctrl+P
»

uonnos upsiong gy O

ama |

Search Everywhere Ctrl+T

l#

Settings...

Cirl+Ait+s |

Structure

»* Favorites

Mew Projects Settings
Manage IDE Settings

Power Save Mode

Invalidate Caches / Restart... Navigation Bar Ctrl+F2

Exit

iIZTODO B NuGet
|l Edit application settings

Go to File Ctrl+Shift+T

»

>
Recent Files Ctrl+Comma

aseqeieq (f)

Drop files here to open

@' Unit Tests <% Dynamic Program Analysis B Terminal OEvent Log

GOV

3- Hit Install and then Accept when prompted with the privacy note. You can find our privacy policy here

46

Chapter 10. Install JetBrains Rider Plugin

https://specflow.org/privacy-policy/

Welcome to the Step-By-Step Getting Started Guide!

E Settings

Plugins

L]

Appearance & Behavior

Keymap Search Results (1)
> Editor

SpecFlow for Rider
Plug Py I e
I 2 26K

Environment

Version Control i
Build, Execution, Deployment
Languages 8: Frameworks
Tools

? Manage Layers

Marketplace Installed e

Sort By: Relevance =

Install

e SpecFlow for Rider Install
4+ 26K SpecFlow

Testing Frameworks Support Language 140 Mar23...

Plugin homepage

Adds support for syntax highlighting, smart navigation, and
auto-completion to help you write better Gherkin feature files and
automation code,

b Change Notes

Size: 1,85 MB

Cancel

4- You are then required to restart the Rider IDE, hit Restart:

47

Welcome to the Step-By-Step Getting Started Guide!

B settings X
’ Plugins Marketplace Installed b Reset
» Appearance & Behavior SpecFlow .
™ SpecFlow for Rider Restart IDE
eymap Search Results (1) Sort By: Relevance =
> Editor 4+ 26K SpecFlow
. SpecFlow for Rider Restart IDE
Plugins 4 e ‘P‘;;K - Testing Frameworks Support Language 1.4.0 Mar2i..

Environment

w

Version Control Plugin homepage

W

Build, Execution, Deployment Adds support for syntax highlighting, smart navigation, and

Languages 8: Frameworks auto-completion to help you write better Gherkin feature files and
automation code,

W

> Tools
b Change Notes

Size: 1,85 MB

? Manage Layers - Cancel

The installation is now finished. In the next step you’ll create a simple application that will be used throughout this
guide.

48 Chapter 10. Install JetBrains Rider Plugin

cHAPTER 11

Create calculator project

10 minutes
In this step you’ll create the application that will be tested, also called System Under Test (SUT). The application will

be a simple calculator in a C# class library.
1- Open JetBrains Rider and create a new C# class library by selecting “New Solution” from the startup dialog:

49

Welcome to the Step-By-Step Getting Started Guide!

Bl welcome to JetBrains Rider = O *

Search projects Mew Solution Open Get from VC5

JetBrains Rider

Solution2
Projects ~\RiderProjects\5olution2\Solution2 sln

Tutorials

Configure Help

2- Select “Class library” and use the below configurations and click Create.
* Solution & Project name: SpecFlowCalculator

e Solution directory: *choose a location to save the project - in this example the solution is saved to
C:\projects

* Language: C#

» Framework: netcoreapp3.1

50 Chapter 11. Create calculator project

Welcome to the Step-By-Step Getting Started Guide!

E MNew Solution

%, Empty Solution
2 More Templates
NET / .NET Core
VB8 Class Library |
EJ Console Application
£ Desktop Application
@ Unit Test Project

[Worker Service
.MET Framework
fIR Class Library
E] Console Application
£ Desktop Application
€ Unit Test Project
) ASP.MET Web Application
= Shared Project
[Unity Class Library
Xamarin
fIR Library
[Application
€ Unit Test Project
Other

.MET / .NET Core - Class Library

) ASP.NET Core Web Applic...

Template author: Microsoft

Solution name:
Project name:

Solution directory: Ch\projects

SpecFlowCalculator

SpecFlowCalculator

Put solution and project in the same directory

Create Gt

SDK: 5.0.103 Change

Language: c#

Framework:

netcoreapp3.] v

¥ repository

Resulting project structure Project template info

-t SpecFlowCalculater\SpecFlowCalculator.sin

jects SpecFlowCalculater\SpecFlowCalculator< project files=

Cancel

3-Rename Classl.cstoCalculator.cs and overwrite the content with the following code :

using System;

namespace SpecFlowCalculator

public int FirstNumber { get; set;
public int SecondNumber { get; set;

}
}

throw new NotImplementedException();

{
public class Calculator
{
public int Add()
{
}
}
}

51

Welcome to the Step-By-Step Getting Started Guide!

E File Edit View MNavigate Code Refactor Build Run Tests Tools VCS5 Window Help SpecFlowCalculator = O =
% SpecFlowCalculator P SpecFlowCalculator + C# Calculator.cs ~ ¢ Debug | Any CPU Add Configuration... B aQ
& 4 Solutionw €3 = = & — C# Calculatorcs A
5
fe 7T Q using System; v 3
M. & SpecFlowCalculator - 1 project - =
] 3 namespace SpecFlowCalculator S
v [e% SpecFlowCalculator 2
> Dependencies “ 1 =
[t Calculatores | 5 public class Calculator
Fp Scratches and Consoles 6 { e
7 public int Fi r { get; set; } =
8 public int S r 1 get; set; } z
9 s
10 public int Add() =
1 { g
12 throw new NotImplementedException(); —z
13 I3 &
14 F
. 15 & H
g
u
2
;)| |
{} SpecFlowCalculator
ET0DO @ NuGet @ Unit Tests =% Dynamic Program Analysis B Terminal *\ Build € Event Log
IZ Build succeeded at 14:23:39 (moments ago) SpecFlowCalculator 152 CRLF UTF-8 4spaces m € @) W

4- Now build the solution by navigating to “Build Build Solution”. You should see a “Build Succeeded” message in

the output window:

@ File Edit View MNavigate Code Refactor | Build JRun Tests Tools VCS Window Help SpecFlowCalculator = O X
% SpecFlowCalculator I+ SpecFlowCalculater “ Build Solution Ctrl+Shift+B + Add Configuration... HQ
5 & Solutionv @ E = & — cEca Rebuild Solution A
s Clean Solution -
F@ T Y Q . . . v 3
= Build Current Project: SpecFlowCalculator Ctrl+Shift+F7 =
IR & SpecFlowCalculator - 1 project - Build Startup Proje :T"
~ I8 SpecFlowCalculat . ' =
e 4 Advanced Build Actions 5 =
> A, Dependencies K
C# Calculator.cs 5 C-hange ?olution Configuration...
P Scratches and Consoles 6 ange Levice N
7 Ctri+Fo |; } =
8 public int S diumber { get; set; } 2
9 g
10 public int Add() =
11 { g
12 throw new NotImplementedException(); T
13 ¥ i
14 }
15 F
o A A A
E)| |
E {} SpecFlowCalculator
af Build: Build succeeded o —
. % Build with surface heuristics started at 15:10:05
o
= = B 11d completed Jjn 00:00:00 006
& Build succeeded at 15:10:05
* E
ET0DO ® NuGet & Unit Tests =% Dynamic Program Analysis ™ Terminal ~ *& Build € Event Log
I Build whole sclution SpecFlowCalculator 15:2 CRLF UTF-8 4spaces m & @) W
52 Chapter 11. Create calculator project

Welcome to the Step-By-Step Getting Started Guide!

The calculator application is now built. In the next step you’ll learn how to create a SpecFlow project.

53

Welcome to the Step-By-Step Getting Started Guide!

54 Chapter 11. Create calculator project

cHAPTER 12

Create SpecFlow project

5 minutes
In this step you’ll create a SpecFlow project and add it to the existing calculator solution.

1- Right-click the solution item “’SpecFlowCalculator’(1 of 1 project)” under the Solution Explorer and select the
“Add New Project” menu item.

E File Edit View MNavigate Code Refactor Build Run Tests Tools VC5 Window Help SpecFlowCalculator = O >
% SpecFlowCalculator.sin -~ 7 Debug | Any CPU Add Configuration... 0 Q
] 4 Solution~ @ E = 1@ — C# Calculatorcs A
fe 77 Q 1 using System; v rg"
= : =
&> SpecFlowCalculator |1 pr E]
P cl Add L= New Project... Ctrl+Shift+N I Z
v [¢% SpecFlowCalculator = AT E)
et i =
50 Al Dependencies @ Manage u ackages New Solution Folder g
C# Calculator.cs (Untees pm_JECtS Add Existing Project...
P@ Scratches and Consoles iR Attach Existing Folder... %
“S Build Solution & New Scratch File Ctrl+ Alt+Shift+ Insert z
E Data Source > %
€ Publish... mE DDL Data Source —_
e * | iz Data Source from URL =)
Show Local History & Data Source from Path E
Refactor This... Ctrl+Shift+R [71 Driver and Data Source oF g
7 Inspect Cade... 1 Driver °
Code Cleanup... Ctrl+E, C
s Edit >
5 C Path...
= i zulator
“ Show in Explorer
af Build: Build succeeded o —
Tools >
= A, Build with surfac Propertics... Alt+Enter 10:85
= -, Build completed ik—vwovvorouw
g Build succeeded at 15:10:05
* »3
ETODO ® NuGet ' Unit Tests =% Dynamic Program Analysis B Terminal ~ *% Build @ Event Log
IC Create new project SpecFlowCalculator 15:2 CRLF UTF-8 4spaces a & @) W

55

Welcome to the Step-By-Step Getting Started Guide!

2- Click on SpecFlow Project Template under the Other category, enter the project name as ‘“‘SpecFlowCalcula-

tor.Specs”, keep the suggested location (the solution folder), pick xUnit as the Test Framework and hit Create:

Note: If you cannot see SpecFlow Project Template, ensure you have SpecFlow for Rider Plugin 1.6.0 or
higher installed. (Only compatible with Rider 2021.1 or higher)

Note: Currently running the tests from the feature files is only possible with xUnit and NUnit.*

E Mew Project

2 More Templates
MET/ .NET Core

fi8 Class Library

El Console Application

&1 Desktop Application

€ Unit Test Project

O Worker Service
MNET Framework
fIE Class Library
E Console Application
&7 Desktop Application
" Unit Test Project
) ASP.NET Web Application
5 Shared Project
[Unity Class Library
Kamarin
§IE Library
1 Application
@ Unit Test Project
Qther

) ASP.NET Core Web Applicati...

[SpecFlow Project

Other : SpecFlow Project

Template author:

Project name:

Project directory: I Ch\projects\SpecFlowCalculator I

Language:
Framework:
Test Framework:

FluentAszertions:

SpecFlow Team

lSpecFIowCaIcuIator.Specs l

Resulting project structure Project template info

SpecFlowCalculator.5pecs\< project files»

netcoreapp3.] Al (O]
xUnit ~ @
Include v (2

Cancel

3- JetBrains Rider will now create the new project, you should see the new SpecFlow project in the Solution Explorer

as per below:

56

Chapter 12. Create SpecFlow project

Welcome to the Step-By-Step Getting Started Guide!

Structure

* Favorites

(]

Vl'dS

E File Edit View MNavigate Code Refactor Build Run Tests Tools VCS5 Window Help SpecFlowCalculator

% SpecFlowCalculator P SpecFlowCalculator.Specs.csproj ~ ¢ Debug | Any CPU Add Configuration...
& 4> Solution~ E = T —

5

Ee 77 Q

I

pecFlowCalculator - 2 projects

v [t% SpecFlowCalculator

>

& Dependencies
CH Calculator.cs

I 2% SpecFlowCalculator.Specs I

>

W w W v w

o

Search Everywhere Ctrl+T

% Dependencies

[Drivers . .
- Go to File Ctrl+Shift+T
[Hook .

- StZ;ss Recent Files Ctrl+Comma

cratches and Consoles

Navigation Bar Ctrl+F2

Drop files here to open

= TODO B NuGet €' Unit Tests =% Dynamic Program Analysis B Terminal #\ Build
Build succeeded at 15:10:05 (51 minutes ago)

O
X

uopniog Ul siond g O

1wl 1|

aseqeleq ()

ﬂ Event Log

%GOV

In the next step you will learn how to add a project reference and how to use the test explorer.

57

Welcome to the Step-By-Step Getting Started Guide!

58 Chapter 12. Create SpecFlow project

cHAPTER 13

Create SpecFlow project - Continue

5 minutes

You will now add a project reference to the “SpecFlowCalculator” class library in the newly created SpecFlow project.
This is necessary because we want to test the “Calculator” class implemented in the class library in the “SpecFlow-
Calculator.Specs” project. To do this, follow the below steps:

1- Expand the project node “SpecFlowCalculator.Specs” in the Solution Explorer, right-click the “Dependencies”
node and select the “Add Reference...” menu item.

2- In the “Add Reference” dialog check the “SpecFlowCalculator” class library and click Add.

59

Welcome to the Step-By-Step Getting Started Guide!

E File Edit View MNavigate Code Refactor Build Run Tests Tools VCS5 Window Help SpecFlowCalculator = O =
% SpecFlowCalculator P SpecFlowCalculator.Specs.csproj ~ ¢ Debug | Any CPU ~ Add Configuration... 0 Q
5 4 Solutionw T T & -
E Bl Add Reference X f
2@ T7v Q
. & SpecFlowCalculator - 2 projects =
©~
v I¢% SpecFlowCalculator %
> A, Dependencies =
It% <SpecFlowCalculator>
C# Calculator.cs ID chieep I
v It SpecFlowCalculator.Specs e
» &% Dependencies Search Everyw Ie% <SpecFlowCalculator.Specs> <reference to self> =
=
> [Drivers l Add Reference... I . 7
: b File Ctrl4 =
» [Features @ Manage MuGet Packages
> I Hooks Refactor This.. Ctrl+Shift+R. e =
nt Files C{ =
? [Steps Find Dependent Code =
P Scratches and Consoles 5 . g
© Navigation Ba g
]
Drop files herg
2
g
.
2 1 reference is selected
2
i Add From... Cancel
ET0DO @ NuGet @ Unit Tests =% Dynamic Program Analysis B Terminal *\ Build € Event Log
Il Add reference € OV

Now the solution is set up with a class library containing the implementation of the calculator and a SpecFlow project
that contains the specification and tests of the calculator.

3- Now build the solution. You should see the “Build Succeeded” message in the output window.
4- Run all the tests by navigating to “Tests Run All Tests from Solution”:

> Note: The red underline applied to the project name and feature file in the explorer pane is a known xUnit bug in
Rider and does NOT indicate an error.

60 Chapter 13. Create SpecFlow project - Continue

Welcome to the Step-By-Step Getting Started Guide!

E File Edit View MNavigate Code Refactor Build Rgnl]sisl Teols VCS Window Help SpecFlowCalculator = O =
kulator | [e% SpecFlowCalculator.Specs © Steps - C# CalculatorStep Unit Testing Quick List... Alt+Shift+U & All tests from Solution v = B B Q
& 4> Solution + £ = = 0 — C# Caluls i Ctri+U, R A
5 Cilall D -
E® T Y Q L _ : v 3
- 16 P> Run Current Session Ctrl+lJ, ¥ =
v & SpecFlowCalculator - 2 projects - l» T T T I =
17 ests ut| b , 2" =
v [t% SpecFlowCalculator - o donn Sl L= jumber is (.*)")] 2
> & Dependencies c Repeat Previous Run Ctrl+lJ, U Bz
C¥ Calculator.cs 18 = Rerun Failed Tests Ctrl+U,F stNumberIs(int number) _
» E% SpecFlowCalculator.Specs 19 Run T il Failure Ctrl+LJ, W &
~ A Dependencies — 20 D e rrange (precondition) logic _z
> [.NETCoreApp 3.1 21 Ctrl+U, 5 petrieving scenario-specific datp, se® @
b3 -a- Imports 27 Crrle lina tavt an the tahla annumant [HElfhe <
Crl+U, A [/
. .ct
> ™ Drivers Ctri+U, M ctor =
Unit Tests: Explorer @ Alltests from Selution g — =
» - S A g
[— Clear Test Results @
~ @I SpecFlowCalculator.Specs (1 test) Failed] 1te = E—— xUnit.SpecFlowPlugin.XUnitPendingStepException: Test |
& ~ @ () SpecFlowCalculator.Specs.Features ([tesi s AT T Eplerer Crri+Alt=U |5 calculatorFeature. AddTwoNumbers
2 v @ CalculatorFeature (7 test) Failec: Onf or v Focus Unit Test Session Ctrl+Alt+T
e = © Add two numbers Failed: TechTqk.sp | # Unit Testing Settings... Plugin.XUnitPendingStepException:
- Unit Tests Tool Window Actions * |definitions are not implemented
L& Session Options >
il 7 Help >
: Test pending: One or more step definitions are not implemented yet.
AT G AT ST EnE T TN T TONe . GTVeEn I NeEr IS, 1 -
ET0D0 @ NuGet @' Unit Tests =% Dynamic Program Analysis B Terminal *\ Build € Event Log
IZI File pattern "*.feature’ (from 'SpecFlow for Rider' plugin)... (today 12:53) SpecFlowCalculator.Specs 1%:5 CRLF UTF-8 4spaces I @ lerorinifile © W

The tests would fail as expected as our step definitions are not yet implemented.

In the next step you will learn how to automate your first scenario and implement the step definitions.

61

Welcome to the Step-By-Step Getting Started Guide!

62 Chapter 13. Create SpecFlow project - Continue

cHAPTER 14

Bind the first step

10 minutes
In this step you’ll bind your first step (automate your first scenario step with SpecFlow).

1- Open the Calculator. feature file by double-clicking it in the Solution Explorer (SpecFlowCalculator.Specs
Features Calculator.feature)

E File Edit VWiew MNavigate Code Refactor Build Run Tests Tools VCS Window Help SpecFlowCalculator = O X
& SpecFlowCalculater | [SpecFlowCalculator.Specs | Features + @ Calculatorfeature S, ¥ Debug | Any CPU Add Cenfiguration... B Q
5 4> Solution « EB E - O — @ Calculator.feature L
§ ® ¥ ¢ Q 1 Feature: Calculator o rg"
I % SpecFlowCalculator -2 projects 2 ![Calculatnr](https:_f{specﬂow.0rg,J’wp—c0ntent{uplnads{Z@Z@j@?!calculatmg
> T8 SpecFlowCalculator 3 Simple calculator for adding ##*two** numbers g
hd E% SpecFlowCalculator.Specs 4 §
> R Dependencies 5 Link to a feature: [Calculator]($projectname$/Features/Calculator.featur
5 [Drivers 6 *%xFurther read#**x: *x[Learn more about how to generate Living Documente .,
- mm 7 z
> @ Calculatorfeature e & | enytag g
> [Hooks 9 Scenario: Add two numbers 8
> [Steps 10 Given the first number is 50 =
P@ Scratches and Consoles 11 And the second number is 70 §
12 When the two numbers are added z
13 = Then the result should be 12'2| @
e
g
£
-
g
*
iZ TODO =% Dynamic Program Analysis €' Unit Tests B Terminal B NuGet Q Event Log
ICJ JetBrains Rider 2020.3.4 available // Update... (7 minutes ago) SpecFlowCalculator.Specs 13:34 CRLF UTF-8 Tab % lerrorin 1file =& 7

The purpose of this feature file is to document the expected behavior of the calculator in a way that it is both human-

63

Welcome to the Step-By-Step Getting Started Guide!

readable and suitable for test automation. SpecFlow uses the Gherkin language where you can phrase the scenarios
using Given/When/Then steps. Currently there is a single scenario (automatically added by the SpecFlow project
template) that describes how adding two numbers should work with the calculator.

Here is a closer look at the Gherkin scenario used in this template:

Scenario: Add two numbers
Given the first number is 50
And the second number is 70
When the two numbers are added
Then the result should be 120

Based on the scenario text, SpecFlow generates an automated test that executes the scenario. However, it is not yet
defined what the steps of the scenario should actually *“do”.

2- Right-click the first Given step “Given the first number is 50” and select “Go To —> Implementation” or use the
“Ctrl + FI12” shortcut.

E File Edit View MNavigate Code Refactor Build Run Tests Tools VCS5 Window Help SpecFlowCalculator = O >
[© SpecFlowCalculator | [t SpecFlowCalculator.Specs © Features = @ Calculatorfeature %, {7 Debug | Any CPU Add Configuration... M Q
5 4 Solution « E:E Z = o — 3 Calculator.feature &
e ¥ 7 Q 18 Feature: Calculator v |3
oy 1 . _ o
™ . T SpecFlowCalculator 2 projects ’ ! FCalculator](https.f}spe;flow.org,pr content/uploads/2820/0%/calculator s
> T2 SpecFlowCalculator 3 Simple calculator for adding ##*two** numbers =
e E% SpecFlowCalculator.Specs “ =
> A Dependencies 5 Link to a feature: [Calculator]($projectname$/Features/Calculator.featur
> [Drivers 6 ***Further read##%: **[Learn more about how to generate Living Documente .
v [Features 7 z
> @ Calculatorfeature 8 & @nytag)
> [Hooks 9 Scenario: Add two numbers .
> [Steps 119 ¥ Given the Tirst number is 5€ =
P9 Scratches and Consoles 11 And the second number is 70 |(®) Navigateto =
12 When the two numbers are add_ Declaration F12 §
13 Then the result should be 17 Implementation ctri+F12 | @
Base Symbols Alt+Home
= Find Usages of Symbol Shift+F12
£ Related Files... Ctrl+Alt+F7
=
= Type of Symbol Ctrl+5hift+F11
L Usages of Symbol Alt+5hift+F12
Derived Symbols Alt+End
o
£ IL Code
&
i
o Referenced Code
iE TODO =% Dynamic Program Analysis € Unit Tests B Terminal B NuGet Q Event Log
= JetBrains Rider 2020.3.4 available // Update... (15 minutes aga) SpecFlowCalculator.Specs 10:33 CRLF UTF-8 Tab T % lerorin1file © W

The SpecFlow plugin locates the step definition (binding) that belongs to this step. In this example, it opens the
CalculatorStepDefinitions class and jumps to the GivenTheFirstNumberIs method.

64 Chapter 14. Bind the first step

Welcome to the Step-By-Step Getting Started Guide!

E File Edit View MNavigate Code Refactor Build Run Tests Tools VCS5 Window Help SpecFlowCalculator = O =

FlowCalculator = [£% SpecFlowCalculator.Specs © Steps - CH# CalculatorStepDefinitions.cs ~ ¢ Debug | Any CPU Add Configuration... B aQ

5 @ Calculator.feature C# CalculatorStepDefinitions.cs &

S

2 1 using TechTalk.SpecFlow; o g

m :
3 namespace SpecFlowCalculator.Specs.Steps v
5 [Binding] :
6 public sealed class CalculatorStepDefinitions N
7 { _
8 // For odditional details on SpecFlow step definitions see https://go.specflow.org/doc-stepdef —g
? =
10 private readonly ScenarioContext _scenarioContext;
11 a‘:
12 public CalculatorStepDefinitions(ScenarioContext scenarioContext) — E—
- g
13 { . _ Z
14 _scenarioContext = scenarioContext;
15 }

o 1o —

z 17 [6iven(regex "the first number is (.*)")]

= 1g public void GivenTheFirstNumberIs(int number) —_
19 {

.g 20 771000 1Implement arrange (precondition) Logic

E 21 // For storing and retrieving scenario-specific data see https://go.specflow.org/doc-sharingdata

* () Steps » " CalculatorStepDefinitions » @ GivenTheFirsthumberls
Q, Find iE TODO =% Dynamic Program Analysis @ UnitTests B Terminal '@ MNuGet @ Event Log

= JetBrains Rider 2020.3.4 available // Update... (30 minutes ago) SpecFlowCalculator.Specs 251 CRLF UTF-8 4spaces I @ lerorinifile © W

*The step definition is located based on the [Binding] attribute on the class and the [Given] attribute on the
method. The regular expression of the Given attribute matches the text of the scenario step.

3- Add the below field to the class to instantiate the calculator that we want to test and created in Step 2 of this guide
(SUT).

private readonly Calculator _calculator = new Calculator();

4- Replace the implementation of the first step definition method with the below code which sets the first number of
the calculator.

[Given ("the first number is (.*)")]
public void GivenTheFirstNumberIs (int number)

{

_calculator.FirstNumber = number;

65

Welcome to the Step-By-Step Getting Started Guide!

E File Edit View MNavigate Code Refactor Build Run Tests Tools VCS5 Window Help SpecFlowCalculator = O =
% SpecFlowCalculator P SpecFlowCalculator.Specs © Steps + C# CalculatorStepDefini ~ ¢ Debug | Any CPU Add Configuration... B aQ
5 @ Calculator.feature C# CalculatorStepDefinitions.cs &
% 1 using TechTalk.SpecFlow; 019 A1 ~ v "g"
m 2 z
3 namespace SpecFlowCalculator.Specs.Steps v
4 i i :
5 [Binding] =
6 public sealed class CalculatorStepDefinitions N
7 { -='
8 private readonly ScenarioContext _scenarioContext; =
10 I private readonly Calculator _calculator = new Calculator(); -
11 — E
12 public CalculatorStepDefinitions(ScenarioContext scenarioContext) g
13 { g
14 _scenarioContext = scenarioContext; -
15 } =
@ 146 —
Z 17 [6iven(regex "the first number is (.*)")] -
; 7 1 usage =
= 1g public void GivenTheFirstNumberIs(int number) :
% 20 _calculator.FirstNumber = number;
= | g A A A
f ° ! i
() Steps » * CalculaterStepDefinitions
Q, Find iE TODO =% Dynamic Program Analysis @ UnitTests B Terminal '@ MNuGet @ Event Log
IZ JetBrains Rider 2020.3.4 available // Update... (1 hour ago) SpecFlowCalculator.Specs 2212 CRLF UTF-8 4spaces T @ 2emorsin2files © W

5- Execute the test in the Test Explorer and open the text explorer output to see the details. You can see the “done”
status here indicating the first step “Given the first number is 50" has been matched to the step definition method as per
above binding. The remaining steps are yet to be implemented and are in “pending and “skipped” status as expected.

E File Edit View MNavigate Code Refactor Build Run Tests Tools VC5 Window Help SpecFlowCalculator = O >
% SpecFlowCalculator | [t% SpecFlowCalculator.Specs | Steps © C# Calculatorst S, ¢ Debug | Any CPU ~ & Alltests from Solution v B 3% B Q
5 @ Calculator.feature C# CalculatorStepDefinitions.cs &
é 37 [When(regex: "the two numbers are added")] v Z
: ig public void WhenTheTwoNumbersAreAdded() g
39 { e
40 //TOD0: implement act (action) logic =
41 =
42 _scenarioContext.Pending();
43 } 8o
44 —_—
45 [Then(regex: "the result should be (.%)")] e g
{} Steps » i CalculatorStepDefinitions @ & GivenTheSecondNumberls
Unit Tests: Explorer © All tests from Selution o — f
» - Ctrl+F to filter I ¥ N EJ - AR g
- m
> ~ @Ik SpecFlowCalculator.Specs (1 test) Failed: 1t @ Add two numbers [303 ms] TechTalk.SpecFlowaxUnit.SpecFlowPlugin.XUnitPendingStepException: Test pi
5 1 td
~ ={;ScpelcFllowCFaIcuIatoT.‘Specs;:FellatLllr;s|. o oi 5 e LIEhEe o 6
! t t (1 test) J S
E c ;:d:;;ea L"eb' F’_l :':c hT"TkU ->] done:J CalculatorStepDefinitions.6ivenTheFirstNumberIs(50) (0,1s)
2 » - gnumbers Tated: Ieela= " And the second number is 78
- -> pending: CalculatorStepDefinitions.GivenTheSecondNumberIs(70)
When the two numbers are added
B -> skipped because of previous errors
= Then the result should be 120
* -> skipped because of previous errors
Q Find (=ToDO =% Dynamic Program Analysis O UnitTests B Terminal '@ NuGet *S Build A Event Log
= JetBrains Rider 2020.3.4 available // Update... (today 09:22) SpecFlowCalculator.Specs 3510 CRLF UTF-8 4spaces T @ demorsin2files © W

66 Chapter 14. Bind the first step

Welcome to the Step-By-Step Getting Started Guide!

In the next step you will bind the rest of the scenario steps.

67

Welcome to the Step-By-Step Getting Started Guide!

68 Chapter 14. Bind the first step

cHAPTER 15

Bind remaining steps

10 minutes
In this step you’ll bind the remaining steps of the scenario.

1- Similar to the previous step, Right-click the second Given step “And the second number is 70” and select “Go To
—> Implementation” or use the “Ctrl + FI2” shortcut.

2- Implement the binding of the second step “And the second number is 70” by replacing the code of the
GivenTheSecondNumberIs method with the below:

[Given ("the second number is (.*)")]
public void GivenTheSecondNumberIs (int number)
{

_calculator.SecondNumber = number;

}

69

Welcome to the Step-By-Step Getting Started Guide!

E File Edit View MNavigate Code Refactor Build Run Tests Tools VCS5 Window Help SpecFlowCalculator = O =
% SpecFlowCalculator P SpecFlowCalculator.Specs © Steps © C# Calculator5 ~ ¢ Debug | Any CPU ~ & All tests from Solution | -] 0 Q
5 @ Calculator.feature C# CalculatorStepDefinitions.cs &
S
2 ey
& 10 private readonly Calculator _calculator = new Calculator(); v :
NI 2
o g
12 public CalculatorStepDefinitions(ScenarioContext scenarioContext) 5
13 { =
14 _scenarioContext = scenarioContext;
15 } *
16 =
17 [6iven(regex: "the Tirst number is (.*)")] %
18 public void GivenTheFirstNumberIs(int number) =
=]
19 { iy
20 _calculator.FirstNumber = number; g
21 }
22 |]
@ 23 [6iven(regex: "the second number is (.%)")]
E usage
f 24 public void GivenTheSecondNumberIs(int number) =
=25 {
3 26 _calculator.SecondNumber = number;
5 27 +
; 28
() Steps : i CalculatorStepDefinitions
= TODO = Dynamic Program Analysis € Unit Tests B Terminal '@ NuGet * Build Q) Event Log
= JetBrains Rider 2020.3.4 available // Update... (43 minutes ago) SpecFlowCalculator.Specs 229 CRLF UTF-8 4spaces W @ lemorinlfile ©

> Note: We use the “And” keyword in the Gherkin scenario for better readability. The “And” keyword will be
interpreted as “Given”, “When” or “Then” depending on the previous step(s) in the scenario. In this example the
“And the second number is 70" is interpreted as a “Given” step because the previous step is a “Given” step.

3- Next, implement the binding of the third step, “When the two numbers are added”, by replacing the code of the
WhenTheTwoNumbersAreAdded method with the below. The method must have a When attribute, as it belongs
to the “When” step in the scenario.

private int _result;

[When ("the two numbers are added")]
public void WhenTheTwoNumbersAreAdded ()

{
_result = _calculator.Add();

70 Chapter 15. Bind remaining steps

Welcome to the Step-By-Step Getting Started Guide!

E File Edit View MNavigate Code Refactor Build Run Tests Tools VCS5 Window Help SpecFlowCalculator = O =
kulator [e2 SpecFlowCalculator.Specs © Steps - C# CalculatorStepDefinitions.cs ~ ¢ Debug | Any CPU ~ & All tests from Solution | -] 0 Q
5 @ Calculator.feature C# CalculatorStepDefinitions.cs &
S
Z 10 private readonly Calculator _calculator = new Calculator(); a1 ~ v 5
BT =
»
12 private int _result; £
13 =
14 public CalculatorStepDefinitions(ScenarioContext scenarioContext){...}
18 —
19 [Given(regex: "the Tirst number is (.#*)")] z
20 public void GivenTheFirstNumberIs(int number){...} B
24 E
25 [6iven(regex: "the second number is (.%)")] g
1 usage g
26 public void GivenTheSecondNumberIs(int number){...} °
30
o 31 [When(regex: "the two numbers are added")]
2 32 public void WhenTheTwoNumbersAreAdded()
* 53 {
g 34 _result = _calculator.Add();
5 35 I3
£ 36 F |
* {} Steps » *i¢ CalculatorStepDefinitions
= TODO = Dynamic Program Analysis € Unit Tests B Terminal '@ NuGet * Build Q) Event Log
& JetBrains Rider 2020.3.4 available // Update... (today 09:39) SpecFlowCalculator.Specs 361 CRLF UTF-8 4spaces T @ lermorinlfile ©

This implementation calls the Add method of the calculator. Note that the result of the addition is not stored by the
calculator in a property/field but it is returned to the caller. It’s a good idea to store the returned value in a field so that
we can work with the result afterwards.

4- Implement the binding of the last step, “Then the result should be 1207, by replacing the code of the
ThenTheResultShouldBe method. The method must have a Then attribute, as it belongs to a “Then” step
in the scenario.

Add a namespace using for xUnit at the top of the file:

using Xunit;

Use the below code for implementation of the “Then” step which validates if the result of the addition matches the
expected value.

[Then ("the result should be (.x)")]
public void ThenTheResultShouldBe (int result)
{

Assert.Equal (result, _result);

71

Welcome to the Step-By-Step Getting Started Guide!

E File Edit View MNavigate Code Refactor Build Run Tests Tools VCS5 Window Help SpecFlowCalculator = O =
kulator [e2 SpecFlowCalculator.Specs © Steps - C# CalculatorStepDefinitions.cs ~ ¢ Debug | Any CPU ~ & All tests from Solution | N - B Q
5 C# CalculatorStepDefinitions.cs &
;‘J 71 usage A1 ~ v 3
I 23 public void GivenTheSecondNumberIs(int number) 2
29 { g
30 _calculator.SecondNumber = number; g
31 F —
32 e
33 [When(regex: "the two numbers are added")] z
7] 1 usage g-
34 public void WhenTheTwoNumbersAreAdded() h
35 1 =
36 _result = _calculator.Add(); g
37 } g
38 E
39 [Then(regex: "the result should be (.%)")]
o #] 1 uzage
E 40 public void ThenTheResultShouldBe(int result)
& 41 {
= 42 Assert.Equal(expected: result, actual _result);
.| 43 F
% 4 i
= A A A
- ' i
{} Steps » *i¢ CalculatorStepDefinitions
= TODO =% Dynamic Program Analysis € Unit Tests B Terminal '@ NuGet * Build € Event Log
IZ Build succeeded at 16:13:18 (moments ago) SpecFlowCalculator.Specs 44:6 CRLF UTF-8 4spaces m) lemorinifile @ W ¥

After implementing all step definitions and cleaning up the file you should have the following code:

using TechTalk.SpecFlow;
using Xunit;

namespace SpecFlowCalculator.Specs.Steps

{
[Binding]
public sealed class CalculatorStepDefinitions

{

private readonly ScenarioContext _scenarioContext;
private readonly Calculator _calculator = new Calculator();
private int _result;

public CalculatorStepDefinitions (ScenarioContext scenarioContext)

{

_scenarioContext = scenarioContext;

[Given ("the first number is (.=*)")]
public void GivenTheFirstNumberIs (int number)

{

_calculator.FirstNumber = number;

[Given ("the second number is (.x)")]
public void GivenTheSecondNumberIs (int number)

(continues on next page)

72 Chapter 15. Bind remaining steps

Welcome to the Step-By-Step Getting Started Guide!

(continued from previous page)

_calculator.SecondNumber = number;

[When ("the two numbers are added")]
public void WhenTheTwoNumbersAreAdded ()

{
_result = _calculator.Add();

[Then ("the result should be (.x)")]
public void ThenTheResultShouldBe (int result)

{
Assert.Equal (result, _result);

5- Build the solution. The build should succeed.
6- Run the test again.

The test should execute and fail, this is expected. In the Test Detail Summary pane of Test Explorer you can see that
the first two “Given” steps executed successfully and the “When the two numbers are added” step failed with an error :
The method or operation is not implemented. This is because the addition method of the calculator is not implemented

yet.

@ File Edit VWiew MNavigate Code Refactor Build Run Tests Tools VCS Window Help SpecFlowCalculator = O X
I% SpecFlowCalculator © [e% SpecFlowCalculator.Specs | Steps © C# Calculatorst . §1 Debug | Any CPU + @ All tests from Solution v B £ B Q
] @ Calculator.feature C# CalculatorStepDefinitions.cs L
2 2 { a1~ v 3
m 30 _calculator.SecondNumber = number; g
31 I g
32 §
33 [When(regex: "the two numbers are added")]
A 1 uzage 9
(} Steps » “*i CalculatorStepDefinitions % GivenTheSecondNumberls =
Unit Tests: Explorer @ All tests from Solution o — g
» - I N2 & &1et o
>~
v @[T SpecFlowCalculator.Specs (1 test) Failed: 1te @ Add two numbers [157 ms] System.NotlmplementedException: The method or operation is not implern: g
= ~ @ () SpecFlowCalculator.Specs.Features (1 g
c v @ CalculatorFeature (7 test) Failed: One orr Given the first number is 58 °
- & Add two numbers Failed: System.Not -> done: CalculatorStepDefinitions.GivenTheFirstNumberIs(56) (@,0s)
@ And the second number 1s 70
E -> done: CalculatorStepDefinitions.GivenTheSecondNumberIs(78)
i (8,8s)
- When the two numbers are added
g -> error: The method or operation is not implemented. (©,0s)
= Then the resuLt SNoULd De 120
g
I -> skipped because of previous errors
*
iIETODO =% Dynamic Program Analysis € UnitTests B Terminal '@ MuGet “% Build €) Event Log
IC] Unit test session "All tests from Solution' is finished SpecFlowCalculator.Specs 26:38 CRLF UTF-8 4spaces ‘i 0‘, 1errorin1file & 7

In the next step you’ll fix the implementation of the calculator to fix this error.

73

Welcome to the Step-By-Step Getting Started Guide!

74 Chapter 15. Bind remaining steps

cHAPTER 16

Fix implementation

3 minutes
In this step you’ll fix the implementation error of the calculator in the previous page.

1-Open Calculator.csinthe SpecFlowCalculator class library and replace the implementation of the Add
method with the below code:

public int Add()
{

return FirstNumber + SecondNumber;

}

75

Welcome to the Step-By-Step Getting Started Guide!

E File Edit View MNavigate Code Refactor Build Run Tests Tools VCS5 Window Help SpecFlowCalculator = O =
r'bSpecFIowCaIculator |-(§ SpecFlowCalculator + C# Calculator.cs ﬂ ["m| Debug | Any CPU + & All tests from Solution ~ [= ﬁ | O.
& 4> Solution « @ z = 0 — @ Calculator.feature C# CalculatorStepDefinitions.cs C# Calculator.cs &
s
fe 7T Q 1 using tem; A1 ~ v 3
L mSEecFlowCalculator-Eproject: f E
v I SpecFlowCalculator J namespace SpecFlowCalculator %
> A Dependencies “ 1 =
C# Calculator.cs 2 2 usages
» E% SpecFlowCalculator.Specs 5 public class Calculator &
> Dependencies 6 1 z
> [Drivers 72 usages 5
o
~ [Features 7 public int FirstNumber { get; set; } -
> @ Calculatorfeature 712 usages =
> [1Hooks 8 public int SecondNumber { get; set; } o
v [Steps 9 %
C# CalculatorStepDefinitions.cs 7 1 uszge 4
P9 Scratches and Consoles 10 public int Add()
. 1 {
2 12 return FirstNumber + SecondNumber;
z 13 I3
o 14 +
15 +
g
: L[| 1] |
() SpecFlowCalculator
= TODO =% Dynamic Program Analysis € Unit Tests B Terminal '@ NuGet * Build € Event Log
IZ FluentAssertions v3.10.3 was successfully installed to Spec... (29 minutes ago) SpecFlowCalculater 152 CRLF UTF-8 4spaces I @ lerorinifile © W
2- Build the solution. The build should succeed.
3- Run the test. The test should now execute and succeed with the green tick marks indicating no errors:
E File Edit View MNavigate Code Refactor Build Run Tests Tools VCS Window Help SpecFlowCalculator = O X
lowCalculator Eﬁ SpecFlowCalculator.5pecs © Features @ Calculator.feature ‘\ "= Debug | Any CPU & All tests from Solution ~ » ﬁ | Q.
5 @ Calculator.feature C# CalculatorStepDefinitions.cs C# Calculator.cs L
£ 84 @mytag v 3
LI Scenarlo: Add two numbers ;
10 Given the Tirst number is 50 g
11 And the second number is 70 E
12 When the two numbers are added
13 Then the result should be 120 =
Unit Tests: Explorer +" All tests from Solution g
» - Ctrl+F to filter R HIN L - B R IRV =
> - v VI SpecFlowCalculator.Specs (7 test) Success | ' Add two numbers [224 ms] =
& ¥ /() SpecFlowCalculator.Specs Features (1 tesi g
pecriowalcuiator.specsTeatures [T civen the first number is 50 z
¢ v " CalculatorFeature (1 test) Success o)) &
-> done: CalculatorStepDefinitions.GivenTheFirstNumberIs(50) (8,8s) @
+" Add two numbers Success i
And the second number 1s 70
-> done: CalculatorStepDefinitions.GivenTheSecondNumberIs(78)
s (8,0s)
§ When the two numbers are added
- -> done: CalculatorStepDefinitions.WhenTheTwoNumbersAreAdded()
(0,0s)
_g Then the result should be 128
= -> done: CalculatorStepDefinitions.ThenTheResultShouldBe(128)
* (0,0s)
i TODO % Dynamic Program Analysis € Unit Tests B Terminal '@ NuGet *& Build €l Event Log
IC FluentAssertions v5.10.3 was successfully installed to Sp... (34 minutes ago) SpecFlowCalculator.Specs 13:34 CRLF UTF-8 Tab T % lerorinifile © W7

76 Chapter 16. Fix implementation

Welcome to the Step-By-Step Getting Started Guide!

The automation phase is finished, in the next step you’ll learn how to generate living documentation for reporting
purposes.

77

Welcome to the Step-By-Step Getting Started Guide!

78 Chapter 16. Fix implementation

cHAPTER 17

Add Living Documentation

5 minutes

In this step you’ll learn how to generate a living documentation from your test execution results so you can easily
share them with your team.

1- Open a Command Prompt.

2- Install the LivingDoc CLI as a global dotnet tool.

dotnet tool install --global SpecFlow.Plus.LivingDoc.CLI

E¥ Command Prompt

oft Windows [V n .19041

:\Users\User>_

3- Navigate to the output directory of the SpecFlow project. In this example the solution was setup in the
C:\projects folder.

79

Welcome to the Step-By-Step Getting Started Guide!

‘cd C:\projects\SpecFlowCalculator\SpecFlowCalculator.Specs\bin\Debug\netcoreapp3.1l ‘

4- Run the LivingDoc CLI by using the below command to generate the HTML report.

‘livingdoc test-assembly SpecFlowCalculator.Specs.dll -t TestExecution.json ‘

-)

cFlowCalculator cs\bin\Debug\netcoreapp3. c tes cFlowCalculator s.dll -t TestExecution.json

ecFlowCalculator\SpecFlowCalculator.S bin\Debug\netcoreapp3.1>

*Note if you run into issues here, e.g your JSON file name is FeatureData.JSON instead of TestExecution.JSON, this
indicates you have an older version of the CLI tool. Please check our migration guide here to upgrade to the latest
version.

5- Open the generated HTML with your favorite browser. The HTML file is stored in the same folder as the output
directory of the SpecFlow project.

C:\projects\SpecFlowCalculator\SpecFlowCalculator.Specs\bin\Debug\netcoreapp3.
—1\LivingDoc.html

Review the living documentation of the calculator features that you have implemented. Select the “Calculator” feature
in the tree. On the right pane check the detailed description of the feature and the scenarios. You can also see the
“green” test execution result of the scenarios and steps.

80 Chapter 17. Add Living Documentation

https://docs.specflow.org/projects/specflow-livingdoc/en/latest/Guides/Generator-Migration-v3.4-v3.5.html

Welcome to the Step-By-Step Getting Started Guide!

O

@ LivingDochtml#/document/Stan X +

& (&} @ File | C:/projects/SpecFlowCalculator/SpecFlowCalculator.Specs/bin/Debug/netcoreapp3.1/LivingDoc.html#/document/Standalone/feature/2f3... ¥r % Incognito

SpecFlowCalculator.Specs

12,2 12:01 PM GMT+2

T
[5
'

Living Documentation Analytics

S Filter by Key Filter by
v SpecFlowCalculator.Specs ® 1 Passed @ O Failed 0 Others
v Features ® 1Passed @ 0 Failed 0 Others

~ @ Calculator

@ Add two numbers

Simple calculator for adding two numbers

Link to a feature: Calculator
Further read. Learn more about how to generate Living Documentation

nytag

10ms

@ Scenario: Add two numbers

~ Given the first number is 50

~ And the second numberis 70

~ When the two numbers are added

~ Then the result should be 120

Generated by SpecFlow+LivingDoc - Give us feedback!

Check the test result summary by clicking on the “Analytics” tab:

81

Welcome to the Step-By-Step Getting Started Guide!

O
@ LivingDochtml#/document/Stan X +

& (&} @ File | C:/projects/SpecFlowCalculator/SpecFlowCalculator.Specs/bin/Debug/netcoreapp3.1/LivingDoc.html#/document/Standalone/feature/2f3... ¥r % Incognito

SpecFlowCalculator.Specs

[3 generated Apr 12, 2021, 12:01 PM GMT+2

Living Documentation Analytics

Features Scenarios
100.0% 0.0% 0.0% 100.0% 0.0% 0.0%
1 1 0 0 1 1 0 0
PASSED FAILED OTHERS PASSED FAILED OTHERS
Steps
100.0% 0.0% 0.0% 0.0% 0.0% 0.0
4 4 0 0 0 0 0

PASSED FAILED SKIPPED NOT EXECUTED PENDING UNBOUND

~ Unused Step Definitions ()

Every step definition is used in at least one scenario

Generated by SpecFlow+LivingDoc - Give us feedback!

SpecFlow+LivingDoc is packed with great features that truly bring your documentation to life! To read more about
SpecFlow+LivingDoc and its features, please visit our LivingDoc documentation page.

82 Chapter 17. Add Living Documentation

https://docs.specflow.org/projects/specflow-livingdoc/en/latest/index.html

cHAPTER 18

Final

CONGRATULATIONS!

.

You have now successfully created and tested your first SpecFlow project.
We have put together a little exercise for you to test your newly acquired skills, check it out here.

Check out our examples page if you are looking for additional sample projects. We have also put together a sample
project using Selenium for UI automation, you can find it here.

To keep up to date with the latest on SpecFlow Join the SpecFlow Community.

83

https://docs.specflow.org/en/latest/Examples.html
https://docs.specflow.org/projects/specflow/en/latest/ui-automation/Selenium-with-Page-Object-Pattern.html
https://specflow.org/community/

Welcome to the Step-By-Step Getting Started Guide!

84 Chapter 18. Final

cHAPTER 19

Exercise

15 minutes

In this step it is your turn to implement the subtraction feature of the calculator.

1- Add the following scenario to the Calculator. feature file.

Scenario: Subtract two numbers
Given the first number is 120
And the second number is 70
When the two numbers are subtracted
Then the result should be 50

2- Build the solution. The build should succeed.

3- Run the tests. Notice that you have now 2 tests (corresponding to
your two scenarios) and the second scenario is “Skipped” because of missing

85

Welcome to the Step-By-Step Getting Started Guide!

Test Explorer

Search Test Explorer

189 ms

D r-C'o |A2(@1[@ofs1]| B- 8-
Test Duration Traits Test Detail Summary
PR /] SpecFlowCalculator.5pecs (2) 200 ms !
4 0 SpecFlowCalculator.Specs (2) 206 ms
4 @ Calculator (2) 206 ms ® puration:
@ Add two numbers 97 ms mytag

*xAX

Subtract two numbers in Calculator
Source: Calculator.feature line 18

D~

E) Open additional output for this result

A Subtract two numbers 109 ms

bindings.

4- and review the

Click on the “Open additional output for this result”

TestName: Add two numbers

Test Outcome: @ Passed

details of the

scenario

- Standard Output

- -> Loading plugin C: FlowCalculator\SpecF| netcoreapp3. I\LivingDoc.SpecFlowPlugindll
-> -> Loading plugin C:work\SpecFlowCalculator\SpecFlowCalculatorSpecsibin\ Debug\netcoreapp3. 1\SpecRun Runtime.SpecFlowPlugin.dil
-> -> Using default config

Given the first number is 50

-> done: Calc finitions.GivenTheFi 50) (0.05)

And the second number is 70

- done: Cale finitions GivenTl (70) (0.05)
When the two numbers are added

-> done: Calc finiti henT} (0.05)
Then the result should be 120

-> done: Cale finitions.ThenT} 120) (0.05)

execution.

Now it is your turn to implement the subtraction feature in three short steps:

1. First add the missing binding (with the minimum code structure necessary) to get a red scenario.

2. Next turn the scenario green by actually implementing the subtraction logic in the calculator.

3. Refactor your implementation if necessary (scenarios should remain green).

Did it work out?

Check the next step for a possible solution.

86

Chapter 19. Exercise

cHAPTER 20

Exercise-solution

10 minutes

In this step you can review the solution for the challenge in the previous step (implementing the subtraction in the
calculator).

To recap the 3 steps to implement the new feature:
1. First add the missing bindings (with the minimum code structure necessary) to get a red scenario.
2. Next turn the scenario green by actually implementing the logic.
3. Refactor the implementation if necessary (scenarios should remain green).

The first step is to add the missing binding and necessary code to have a red scenario. A quick way of gener-
ating the necessary binding methods is to you right-click the unbound step in the feature file and select “Go To

87

Welcome to the Step-By-Step Getting Started Guide!

17
18 [F5cenario: Subtract two numbers
19 Given the first number is 128
26 And the second number is 7@
21 When the two numbers are subtracted
22 Then the result should be 5@ Rename... Ctrl+R, Ctrl+R
® Go To Definition F12
Breakpoint
k RunTo Cursor Ctrl+F10
Cut Ctrl+X
i Copy Ctrl+C
Annotation
Outlining

Generate Step Definitions
Go To Step Definition Ctrl+Shift+ Alt+5

Definition”.

If SpecFlow does not find the corresponding binding method it offers to generate the skeleton of the binding method

Go to binding

Mo matching step binding found for this step! Do you want
to copy the step binding skeleton to the clipboard?

When|[& the two numbers are subtracted™]
public void WhenTheTwoMumbersAreSubtracted()
1

ScenarioContext. Current.Pending();

I

into your clipboard.

Now you can easily paste the method into the binding class and change the implementation.

[When (Q@Q"the two numbers are subtracted")]
public void WhenTheTwoNumbersAreSubtracted()
{

_result = _calculator.Subtract ();

}

To be able to implement the binding in a meaningful way you have to extend the public interface of the calculator as
well to support the subtraction. However, in the first step, your only goal is to get to an executable red scenario. Hence
you have to add a Subt ract method to the calculator, but the implementation should be skipped e.g. by throwing a
NotImplementedException. Note that in this case the scenario will fail in the “When” step already due to the
exception and the “Then” step will be skipped.

88 Chapter 20. Exercise-solution

Welcome to the Step-By-Step Getting Started Guide!

using System;

namespace SpecFlowCalculator
{
public class Calculator
{
public int FirstNumber { get; set; }
public int SecondNumber { get; set; }

public int Add()
{

return FirstNumber + SecondNumber;

public int Subtract()
{

throw new NotImplementedException();

Alternatively you can return a dummy value (e.g. constant 0). In this case the scenario will also run the “Then” step
and fail on the assertion. This is especially beneficial if you’ve just created the binding of the Then step too and you
want to make sure that the binding works as expected.

public int Subtract ()
{

return 0;

If you build the solution and run the tests the scenario should be red and you’re ready to move on to the second step.

The second step is to implement the subtraction of the calculator to get the scenario green.

public int Subtract ()
{

return FirstNumber - SecondNumber;

If you run the tests again the scenario should be green.

The last step is to refactor the code while keeping all scenarios green. However, in this case the implementation is so
simple that we can skip the refactoring step now.

89

Welcome to the Step-By-Step Getting Started Guide!

90 Chapter 20. Exercise-solution

CHAPTER 2 1

Additional resources

Want to learn more?
¢ Learn Gherkin
— What is Gherkin?
— Given-When-Then with Style Challenge
— Gherkin Reference
* Architectures & Good Practices
— Getting started with the BookShop example
* Automation Patterns
— Page Object Pattern
— Diriver Pattern
» Example code
— SpecFlow Examples
— Given-When-Then with Style challenges
Challenge 1-2
* Challenge 7
* Challenge 8
» Example Projects
— Examples
Need Help?
e Forum
* Trainers

¢ Online Courses

91

https://specflow.org/bdd/gherkin/
https://specflow.org/blog/the-given-when-then-with-style-challenge/
https://docs.specflow.org/projects/specflow/en/latest/Gherkin/Gherkin-Reference.html
https://docs.specflow.org/projects/specflow/en/latest/Getting-Started/Getting-Started-With-An-Example.html
https://docs.specflow.org/projects/specflow/en/latest/Guides/PageObjectModel.html
https://docs.specflow.org/projects/specflow/en/latest/Guides/DriverPattern.html
https://github.com/SpecFlowOSS/SpecFlow-Examples
https://github.com/SpecFlowOSS/gwt-with-style-challenge1-2
https://github.com/SpecFlowOSS/gwt-with-style-challenge7
https://github.com/SpecFlowOSS/gwt-with-style-challenge8
https://docs.specflow.org/en/latest/Examples.html
https://support.specflow.org/hc/en-us/community/topics
https://specflow.org/trainers/
https://specflow.org/online-courses/

	Install Visual Studio extension
	Create calculator project
	Create SpecFlow project
	Create SpecFlow project - Continue
	Bind the first step
	Bind remaining steps
	Fix implementation
	Add Living Documentation
	Final
	Install JetBrains Rider Plugin
	Create calculator project
	Create SpecFlow project
	Create SpecFlow project - Continue
	Bind the first step
	Bind remaining steps
	Fix implementation
	Add Living Documentation
	Final
	Exercise
	Exercise-solution
	Additional resources

