
Welcome to the Step-By-Step Getting
Started Guide!

Feb 08, 2022





Microsoft Visual Studio

1 Install Visual Studio extension 1

2 Create calculator project 5

3 Create SpecFlow project 11

4 Create SpecFlow project - Continue 17

5 Bind the first step 21

6 Bind remaining steps 27

7 Fix implementation 33

8 Add Living Documentation 37

9 Final 43

10 Install JetBrains Rider Plugin 45

11 Create calculator project 49

12 Create SpecFlow project 55

13 Create SpecFlow project - Continue 59

14 Bind the first step 63

15 Bind remaining steps 69

16 Fix implementation 75

17 Add Living Documentation 79

18 Final 83

19 Exercise 85

20 Exercise-solution 87

i



21 Additional resources 91

ii



CHAPTER 1

Install Visual Studio extension

10 minutes

In this step you’ll learn how to install the Visual Studio extension for SpecFlow.

SpecFlow’s Visual Studio extension not only enables the functionalities needed for testing automation, but is also
bundled with several helpful features to make the journey more intuitive.

SpecFlow’s Visual Studio extension works on Visual Studio 2017 & 2019. If you are using an older version of Visual
Studio, please upgrade to the latest version.

Installation of the extension is simple:

1- Open Visual Studio. *We use Visual Studio 2019 in this guide

2- Navigate to “Extensions Manage Extensions Online “ and search for “SpecFlow” in the search bar.

3- Hit Download to begin the installation. You will need to restart Visual Studio for the installation to complete:

1



Welcome to the Step-By-Step Getting Started Guide!

Once the extension is successfully installed, you can see it in the list of “Installed” extensions in the “Extensions
Manage Extensions” dialog of Visual Studio.

2 Chapter 1. Install Visual Studio extension



Welcome to the Step-By-Step Getting Started Guide!

In the next steps you’ll create a simple application that will be used throughout this guide.

3



Welcome to the Step-By-Step Getting Started Guide!

4 Chapter 1. Install Visual Studio extension



CHAPTER 2

Create calculator project

10 minutes

In this step you’ll create the application that will be tested, also called System Under Test (SUT). The application will
be a simple calculator in a C# class library.

1- Open Visual Studio and create a new C# class library by selecting “Create a new project” from the Visual Studio
startup dialog:

5



Welcome to the Step-By-Step Getting Started Guide!

2- Search for “Class library core” and select the “C# Class Library (.NET Core)” project template and click

6 Chapter 2. Create calculator project



Welcome to the Step-By-Step Getting Started Guide!

Next.

3- Enter the project name as “SpecFlowCalculator”, choose a location to save the project and hit Create. In this
scenario the solution will be saved to C:\work.

7



Welcome to the Step-By-Step Getting Started Guide!

> Note: Do NOT use any special characters in your project name e.g. (parenthesis). This will result in build errors
from the code generated by SpecFlow.

*Solution name automatically updates to project name, leave it as is.

4- Rename Class1.cs to Calculator.cs and overwrite the content with the following code :

using System;

namespace SpecFlowCalculator
{

public class Calculator
{

public int FirstNumber { get; set; }
public int SecondNumber { get; set; }

public int Add()
{

throw new NotImplementedException();
}

}
}

8 Chapter 2. Create calculator project



Welcome to the Step-By-Step Getting Started Guide!

5- Now build the solution by navigating to “Build Build Solution” You will see a “Build : 1 Succeeded” message in
the output window:

9



Welcome to the Step-By-Step Getting Started Guide!

The calculator application is now built. In the next step you’ll learn how to create a SpecFlow project.

10 Chapter 2. Create calculator project



CHAPTER 3

Create SpecFlow project

5 minutes

In this step you’ll create a SpecFlow project and add it to the existing calculator solution:

1- Right-click the solution item “Solution ‘SpecFlowCalculator’ (1 of 1 project)” under the Solution Explorer and
select the “Add New Project. . . ” menu item.

11



Welcome to the Step-By-Step Getting Started Guide!

2- Search for “SpecFlow”, select the “SpecFlow Project” template and click

12 Chapter 3. Create SpecFlow project



Welcome to the Step-By-Step Getting Started Guide!

Next.

3- Enter the project name “SpecFlowCalculator.Specs”. Keep the suggested location (the solution folder) and click

13



Welcome to the Step-By-Step Getting Started Guide!

Create.

> Note: Do NOT use any special characters in your project name e.g. (parenthesis). This will result in build errors
from the code generated by SpecFlow.

4- On this next screen you can configure the Test Framework (Runner) you want to use. We are using xUnit in this
tutorial, but you may choose a different unit test runner if you a have particular preference. Hit Create once you have
made your selection.

14 Chapter 3. Create SpecFlow project



Welcome to the Step-By-Step Getting Started Guide!

5- Visual Studio will now create the new SpecFlow project and resolve the NuGet packages in the background. You
should see the new SpecFlow project in the Solution Explorer as per below:

15



Welcome to the Step-By-Step Getting Started Guide!

In the next step you will learn how to add a project reference and how to use the test explorer.

16 Chapter 3. Create SpecFlow project



CHAPTER 4

Create SpecFlow project - Continue

5 minutes

You will now add a project reference to the “SpecFlowCalculator” class library in the newly created SpecFlow project.
This is necessary because we want to test the “Calculator” class implemented in the class library in the “SpecFlow-
Calculator.Specs” project. To do this, follow the below steps:

1- Expand the project node “SpecFlowCalculator.Specs” in the Solution Explorer, right-click the “Dependencies” node
and select the “Add Project Reference. . . ” menu item.

17



Welcome to the Step-By-Step Getting Started Guide!

2- In the “Reference Manager” dialog check the “SpecFlowCalculator” class library and click OK.

18 Chapter 4. Create SpecFlow project - Continue



Welcome to the Step-By-Step Getting Started Guide!

Now the solution is set up with a class library containing the implementation of the calculator and a SpecFlow project
that contains the specification and tests of the calculator.

3- Now build the solution. You should see the “Build : 1 succeeded” message in the output window. *Refer to page 2
step 6 of this guide if you cannot recall how to build the solution.

4- Open the test explorer dialog from the menu “Tests Test Explorer”.

19



Welcome to the Step-By-Step Getting Started Guide!

5- You should see a test already added to the SpecFlow project by the project template. Run the test using the “Run
All Tests in View” icon. Note that the outcome/status of the test remains “Not Run” as the test has not executed yet.

In the next step you will learn how to automate your first scenario.

20 Chapter 4. Create SpecFlow project - Continue



CHAPTER 5

Bind the first step

10 minutes

In this step you’ll bind your first step (automate your first scenario step with SpecFlow).

*If you skipped the previous page make sure you execute the tests with your
preferred runner. The test explorer would look like below (see the dura-
tion in milliseconds), but it does not do much yet and shows the “Skipped” sta-

tus.

1- Open the Calculator.feature file by double-clicking it in the
Solution Explorer (SpecFlowCalculator.Specs Features Calculator.feature)

21



Welcome to the Step-By-Step Getting Started Guide!

The purpose of this feature file is to document the expected behavior of the calculator in a way that it is both human-
readable and suitable for test automation. SpecFlow uses the Gherkin language where you can phrase the scenarios
using Given/When/Then steps. Currently there is a single scenario (automatically added by the SpecFlow project
template) that describes how adding two numbers should work with the calculator.

Here is a closer look at the Gherkin scenario used in this template:

Scenario: Add two numbers
Given the first number is 50
And the second number is 70
When the two numbers are added
Then the result should be 120

Based on the scenario text, SpecFlow generates an automated test that executes the scenario. However, it is not yet
defined what the steps of the scenario should actually “do”.

2- Right-click the first Given step “Given the first number is 50” and select either the “Go To Definition” or the “Go To

22 Chapter 5. Bind the first step



Welcome to the Step-By-Step Getting Started Guide!

Step Definition” command.

Visual Studio locates the step definition (binding) that belongs to this step. In this example, it opens the
CalculatorStepDefinitions class and jumps to the GivenTheFirstNumberIs method.

23



Welcome to the Step-By-Step Getting Started Guide!

*The step definition is located based on the [Binding] attribute on the class and the [Given] attribute on the
method. The regular expression of the Given attribute matches the text of the scenario step.

3- Add the below field to the class to instantiate the calculator that we want to test and created in Step 2 of this guide
(SUT).

private readonly Calculator _calculator = new Calculator();

4- Replace the implementation of the first step definition method with the below code which sets the first number of
the calculator.

[Given("the first number is (.*)")]
public void GivenTheFirstNumberIs(int number)
{

_calculator.FirstNumber = number;
}

24 Chapter 5. Bind the first step



Welcome to the Step-By-Step Getting Started Guide!

5- Execute the test in the Test Explorer and click “Open additional output for this result” from the right

pane.

In the detailed output you can see that the first step “Given the first number is 50” has been matched to the step
definition method “CalculatorStepDefinitions.GivenTheFirstNumberIs” as expected, and it has been called with the
argument 50. The done status means that the step executed successfully with no errors:

25



Welcome to the Step-By-Step Getting Started Guide!

The next step in the scenario is pending, as we have not yet implemented it:

In the next step you will bind the rest of the scenario steps.

26 Chapter 5. Bind the first step



CHAPTER 6

Bind remaining steps

10 minutes

In this step you’ll bind the remaining steps of the scenario.

1- Similar to the previous page , navigate to the bindings from the feature file by right-clicking the second Given step
“And the second number is 70” and select either the “Go To Definition” or the “Go To Step Definition” command.
Alternatively you can open the CalculatorStepDefinitions.cs directly.

2- Implement the binding of the second step “And the second number is 70” by replacing the code of the
GivenTheSecondNumberIs method with the below:

[Given("the second number is (.*)")]
public void GivenTheSecondNumberIs(int number)
{

_calculator.SecondNumber = number;
}

27



Welcome to the Step-By-Step Getting Started Guide!

*We use the “And” keyword in the Gherkin scenario for better readability. The “And” keyword will be interpreted as
“Given”, “When” or “Then” depending on the previous step(s) in the scenario. In this example the “And the second
number is 70” is interpreted as a “Given” step because the previous step is a “Given” step.

3- Next, implement the binding of the third step, “When the two numbers are added”, by replacing the code of the
WhenTheTwoNumbersAreAdded method with the below. The method must have a When attribute, as it belongs
to the “When” step in the scenario.

private int _result;

[When("the two numbers are added")]
public void WhenTheTwoNumbersAreAdded()
{

_result = _calculator.Add();
}

28 Chapter 6. Bind remaining steps



Welcome to the Step-By-Step Getting Started Guide!

This implementation calls the Add method of the calculator. Note that the result of the addition is not stored by the
calculator in a property/field but it is returned to the caller. It’s a good idea to store the returned value in a field so that
we can work with the result afterwards.

4- Implement the binding of the last step, “Then the result should be 120”, by replacing the code of the
ThenTheResultShouldBe method. The method must have a Then attribute, as it belongs to a “Then” step
in the scenario.

Add a namespace using for FluentAssertions at the top of the file:

using FluentAssertions;

Use the below code for implementation of the “Then” step which validates if the result of the addition matches the
expected value (using the FluentAssertions library).

[Then("the result should be (.*)")]
public void ThenTheResultShouldBe(int result)
{

_result.Should().Be(result);
}

29



Welcome to the Step-By-Step Getting Started Guide!

After implementing all step definitions and cleaning up the file you should have the following code:

using FluentAssertions;
using TechTalk.SpecFlow;

namespace SpecFlowCalculator.Specs.Steps
{

[Binding]
public sealed class CalculatorStepDefinitions
{

// For additional details on SpecFlow step definitions see https://go.
→˓specflow.org/doc-stepdef

private readonly ScenarioContext _scenarioContext;

private readonly Calculator _calculator = new Calculator();
private int _result;

public CalculatorStepDefinitions(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

[Given("the first number is (.*)")]
public void GivenTheFirstNumberIs(int number)
{

_calculator.FirstNumber = number;
}

(continues on next page)

30 Chapter 6. Bind remaining steps



Welcome to the Step-By-Step Getting Started Guide!

(continued from previous page)

[Given("the second number is (.*)")]
public void GivenTheSecondNumberIs(int number)
{

_calculator.SecondNumber = number;
}

[When("the two numbers are added")]
public void WhenTheTwoNumbersAreAdded()
{

_result = _calculator.Add();
}

[Then("the result should be (.*)")]
public void ThenTheResultShouldBe(int result)
{

_result.Should().Be(result);
}

}
}

5- Build the solution. The build should succeed.

6- Run the test again.

The test should execute and fail, this is expected. In the Test Detail Summary pane of Test Ex-
plorer you can see that a NotImplementedException has been thrown in the Add method of the

calculator.

7- Click on the “Open additional output for this result” below the stack trace to see a more detailed log of the

31



Welcome to the Step-By-Step Getting Started Guide!

scenario.

You can see that the first two “Given” steps executed successfully and the “When the two numbers are added” step
failed with an error. This is because the addition method of the calculator is not implemented yet.

In the next step you’ll fix the implementation of the calculator to fix this error.

32 Chapter 6. Bind remaining steps



CHAPTER 7

Fix implementation

3 minutes

In this step you’ll fix the implementation error of the calculator in the previous page.

1- Open Calculator.cs in the SpecFlowCalculator class library and replace the implementation of the Add
method with the below code:

public int Add()
{

return FirstNumber + SecondNumber;
}

33



Welcome to the Step-By-Step Getting Started Guide!

2- Build the solution. The build should succeed.

3- Run the test.The test should now execute and succeed with the green tick marks indicating no errors:

4- Click on the “Open additional output for this result” to see a more detailed log of the

34 Chapter 7. Fix implementation



Welcome to the Step-By-Step Getting Started Guide!

scenario:

You can see that each step executed successfully and the test is passed.

In the next step you’ll learn how to generate living documentation.

35



Welcome to the Step-By-Step Getting Started Guide!

36 Chapter 7. Fix implementation



CHAPTER 8

Add Living Documentation

5 minutes

In this step you’ll learn how to generate a living documentation from your test execution results so you can easily
share them with your team.

> Note: If you have skipped the previous steps make sure your project tests have been executed before continuing with
this step.

37



Welcome to the Step-By-Step Getting Started Guide!

1- Open a command prompt.

2- Install the LivingDoc CLI as a global dotnet tool.

dotnet tool install --global SpecFlow.Plus.LivingDoc.CLI

38 Chapter 8. Add Living Documentation



Welcome to the Step-By-Step Getting Started Guide!

3- Navigate to the output directory of the SpecFlow project. In this example the solution was setup in the C:\work
folder.

cd C:\work\SpecFlowCalculator\SpecFlowCalculator.Specs\bin\Debug\netcoreapp3.1

4- Run the LivingDoc CLI by using the below command to generate the HTML report.

livingdoc test-assembly SpecFlowCalculator.Specs.dll -t TestExecution.json

5- Open the generated HTML with your favorite browser. The HTML file is stored in the same folder as the output
directory of the SpecFlow project.

C:\work\SpecFlowCalculator\SpecFlowCalculator.Specs\bin\Debug\netcoreapp3.1\LivingDoc.
→˓html

*Note: if you run into issues here, e.g your JSON file name is FeatureData.JSON instead of TestExecution.JSON, this
indicates you have an older version of the CLI tool. Please check our migration guide here to upgrade to the latest

39

https://docs.specflow.org/projects/specflow-livingdoc/en/latest/Guides/Generator-Migration-v3.4-v3.5.html


Welcome to the Step-By-Step Getting Started Guide!

version.

Review the living documentation of the calculator features that you have implemented. Select the “Calculator” feature
in the tree. On the right pane check the detailed description of the feature and the scenarios. You can also see the
“green” test execution result of the scenarios and steps.

Check the test result summary by clicking on the “Analytics” tab:

40 Chapter 8. Add Living Documentation



Welcome to the Step-By-Step Getting Started Guide!

SpecFlow+LivingDoc is packed with great features that truly bring your documentation to life!

To read more about SpecFlow+LivingDoc and its features, please visit our dedicated LivingDoc documentation page.

41

https://docs.specflow.org/projects/specflow-livingdoc/en/latest/index.html


Welcome to the Step-By-Step Getting Started Guide!

42 Chapter 8. Add Living Documentation



CHAPTER 9

Final

CONGRATULATIONS!

You have now successfully created and tested your first SpecFlow project.

We have put together a little exercise for you to test your newly acquired skills, check it out here.

Check out our examples page if you are looking for additional sample projects. We have also put together a sample
project using Selenium for UI automation, you can find it here.

To keep up to date with the latest on SpecFlow Join the SpecFlow Community.

43

https://docs.specflow.org/en/latest/Examples.html
https://docs.specflow.org/projects/specflow/en/latest/ui-automation/Selenium-with-Page-Object-Pattern.html
https://specflow.org/community/


Welcome to the Step-By-Step Getting Started Guide!

44 Chapter 9. Final



CHAPTER 10

Install JetBrains Rider Plugin

10 minutes

In this step you’ll learn how to install the SpecFlow for Rider plugin. SpecFlow’s JetBrains Rider plugin not only
enables the functionalities needed for testing automation, but is also bundled with several helpful features to make the
journey more intuitive.

The plugin can be found either at the JetBrains marketplace or directly from within the Rider IDE.

To install the plugin directly from JetBrains Rider:

1- Open JetBrains Rider

2- Navigate to File Settings Plugins (Ctrl+Alt+S) and search for “SpecFlow” in the search bar:

45

https://plugins.jetbrains.com/plugin/15957-specflow-support


Welcome to the Step-By-Step Getting Started Guide!

3- Hit Install and then Accept when prompted with the privacy note. You can find our privacy policy here

46 Chapter 10. Install JetBrains Rider Plugin

https://specflow.org/privacy-policy/


Welcome to the Step-By-Step Getting Started Guide!

4- You are then required to restart the Rider IDE, hit Restart:

47



Welcome to the Step-By-Step Getting Started Guide!

The installation is now finished. In the next step you’ll create a simple application that will be used throughout this
guide.

48 Chapter 10. Install JetBrains Rider Plugin



CHAPTER 11

Create calculator project

10 minutes

In this step you’ll create the application that will be tested, also called System Under Test (SUT). The application will
be a simple calculator in a C# class library.

1- Open JetBrains Rider and create a new C# class library by selecting “New Solution” from the startup dialog:

49



Welcome to the Step-By-Step Getting Started Guide!

2- Select “Class library” and use the below configurations and click Create.

• Solution & Project name: SpecFlowCalculator

• Solution directory: *choose a location to save the project - in this example the solution is saved to
C:\projects

• Language: C#

• Framework: netcoreapp3.1

50 Chapter 11. Create calculator project



Welcome to the Step-By-Step Getting Started Guide!

3- Rename Class1.cs to Calculator.cs and overwrite the content with the following code :

using System;

namespace SpecFlowCalculator
{

public class Calculator
{

public int FirstNumber { get; set; }
public int SecondNumber { get; set; }

public int Add()
{

throw new NotImplementedException();
}

}
}

51



Welcome to the Step-By-Step Getting Started Guide!

4- Now build the solution by navigating to “Build Build Solution”. You should see a “Build Succeeded” message in
the output window:

52 Chapter 11. Create calculator project



Welcome to the Step-By-Step Getting Started Guide!

The calculator application is now built. In the next step you’ll learn how to create a SpecFlow project.

53



Welcome to the Step-By-Step Getting Started Guide!

54 Chapter 11. Create calculator project



CHAPTER 12

Create SpecFlow project

5 minutes

In this step you’ll create a SpecFlow project and add it to the existing calculator solution.

1- Right-click the solution item “’SpecFlowCalculator’(1 of 1 project)” under the Solution Explorer and select the
“Add New Project” menu item.

55



Welcome to the Step-By-Step Getting Started Guide!

2- Click on SpecFlow Project Template under the Other category, enter the project name as “SpecFlowCalcula-
tor.Specs”, keep the suggested location (the solution folder), pick xUnit as the Test Framework and hit Create:

Note: If you cannot see SpecFlow Project Template, ensure you have SpecFlow for Rider Plugin 1.6.0 or
higher installed. (Only compatible with Rider 2021.1 or higher)

Note: Currently running the tests from the feature files is only possible with xUnit and NUnit.*

3- JetBrains Rider will now create the new project, you should see the new SpecFlow project in the Solution Explorer
as per below:

56 Chapter 12. Create SpecFlow project



Welcome to the Step-By-Step Getting Started Guide!

In the next step you will learn how to add a project reference and how to use the test explorer.

57



Welcome to the Step-By-Step Getting Started Guide!

58 Chapter 12. Create SpecFlow project



CHAPTER 13

Create SpecFlow project - Continue

5 minutes

You will now add a project reference to the “SpecFlowCalculator” class library in the newly created SpecFlow project.
This is necessary because we want to test the “Calculator” class implemented in the class library in the “SpecFlow-
Calculator.Specs” project. To do this, follow the below steps:

1- Expand the project node “SpecFlowCalculator.Specs” in the Solution Explorer, right-click the “Dependencies”
node and select the “Add Reference. . . ” menu item.

2- In the “Add Reference” dialog check the “SpecFlowCalculator” class library and click Add.

59



Welcome to the Step-By-Step Getting Started Guide!

Now the solution is set up with a class library containing the implementation of the calculator and a SpecFlow project
that contains the specification and tests of the calculator.

3- Now build the solution. You should see the “Build Succeeded” message in the output window.

4- Run all the tests by navigating to “Tests Run All Tests from Solution”:

> Note: The red underline applied to the project name and feature file in the explorer pane is a known xUnit bug in
Rider and does NOT indicate an error.

60 Chapter 13. Create SpecFlow project - Continue



Welcome to the Step-By-Step Getting Started Guide!

The tests would fail as expected as our step definitions are not yet implemented.

In the next step you will learn how to automate your first scenario and implement the step definitions.

61



Welcome to the Step-By-Step Getting Started Guide!

62 Chapter 13. Create SpecFlow project - Continue



CHAPTER 14

Bind the first step

10 minutes

In this step you’ll bind your first step (automate your first scenario step with SpecFlow).

1- Open the Calculator.feature file by double-clicking it in the Solution Explorer (SpecFlowCalculator.Specs
Features Calculator.feature)

The purpose of this feature file is to document the expected behavior of the calculator in a way that it is both human-

63



Welcome to the Step-By-Step Getting Started Guide!

readable and suitable for test automation. SpecFlow uses the Gherkin language where you can phrase the scenarios
using Given/When/Then steps. Currently there is a single scenario (automatically added by the SpecFlow project
template) that describes how adding two numbers should work with the calculator.

Here is a closer look at the Gherkin scenario used in this template:

Scenario: Add two numbers
Given the first number is 50
And the second number is 70
When the two numbers are added
Then the result should be 120

Based on the scenario text, SpecFlow generates an automated test that executes the scenario. However, it is not yet
defined what the steps of the scenario should actually “do”.

2- Right-click the first Given step “Given the first number is 50” and select “Go To –> Implementation” or use the
“Ctrl + F12” shortcut.

The SpecFlow plugin locates the step definition (binding) that belongs to this step. In this example, it opens the
CalculatorStepDefinitions class and jumps to the GivenTheFirstNumberIs method.

64 Chapter 14. Bind the first step



Welcome to the Step-By-Step Getting Started Guide!

*The step definition is located based on the [Binding] attribute on the class and the [Given] attribute on the
method. The regular expression of the Given attribute matches the text of the scenario step.

3- Add the below field to the class to instantiate the calculator that we want to test and created in Step 2 of this guide
(SUT).

private readonly Calculator _calculator = new Calculator();

4- Replace the implementation of the first step definition method with the below code which sets the first number of
the calculator.

[Given("the first number is (.*)")]
public void GivenTheFirstNumberIs(int number)
{

_calculator.FirstNumber = number;
}

65



Welcome to the Step-By-Step Getting Started Guide!

5- Execute the test in the Test Explorer and open the text explorer output to see the details. You can see the “done”
status here indicating the first step “Given the first number is 50” has been matched to the step definition method as per
above binding. The remaining steps are yet to be implemented and are in “pending and “skipped” status as expected.

66 Chapter 14. Bind the first step



Welcome to the Step-By-Step Getting Started Guide!

In the next step you will bind the rest of the scenario steps.

67



Welcome to the Step-By-Step Getting Started Guide!

68 Chapter 14. Bind the first step



CHAPTER 15

Bind remaining steps

10 minutes

In this step you’ll bind the remaining steps of the scenario.

1- Similar to the previous step, Right-click the second Given step “And the second number is 70” and select “Go To
–> Implementation” or use the “Ctrl + F12” shortcut.

2- Implement the binding of the second step “And the second number is 70” by replacing the code of the
GivenTheSecondNumberIs method with the below:

[Given("the second number is (.*)")]
public void GivenTheSecondNumberIs(int number)
{

_calculator.SecondNumber = number;
}

69



Welcome to the Step-By-Step Getting Started Guide!

> Note: We use the “And” keyword in the Gherkin scenario for better readability. The “And” keyword will be
interpreted as “Given”, “When” or “Then” depending on the previous step(s) in the scenario. In this example the
“And the second number is 70” is interpreted as a “Given” step because the previous step is a “Given” step.

3- Next, implement the binding of the third step, “When the two numbers are added”, by replacing the code of the
WhenTheTwoNumbersAreAdded method with the below. The method must have a When attribute, as it belongs
to the “When” step in the scenario.

private int _result;

[When("the two numbers are added")]
public void WhenTheTwoNumbersAreAdded()
{

_result = _calculator.Add();
}

70 Chapter 15. Bind remaining steps



Welcome to the Step-By-Step Getting Started Guide!

This implementation calls the Add method of the calculator. Note that the result of the addition is not stored by the
calculator in a property/field but it is returned to the caller. It’s a good idea to store the returned value in a field so that
we can work with the result afterwards.

4- Implement the binding of the last step, “Then the result should be 120”, by replacing the code of the
ThenTheResultShouldBe method. The method must have a Then attribute, as it belongs to a “Then” step
in the scenario.

Add a namespace using for xUnit at the top of the file:

using Xunit;

Use the below code for implementation of the “Then” step which validates if the result of the addition matches the
expected value.

[Then("the result should be (.*)")]
public void ThenTheResultShouldBe(int result)
{

Assert.Equal(result, _result);
}

71



Welcome to the Step-By-Step Getting Started Guide!

After implementing all step definitions and cleaning up the file you should have the following code:

using TechTalk.SpecFlow;
using Xunit;

namespace SpecFlowCalculator.Specs.Steps
{

[Binding]
public sealed class CalculatorStepDefinitions
{

private readonly ScenarioContext _scenarioContext;

private readonly Calculator _calculator = new Calculator();

private int _result;

public CalculatorStepDefinitions(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

[Given("the first number is (.*)")]
public void GivenTheFirstNumberIs(int number)
{

_calculator.FirstNumber = number;
}

[Given("the second number is (.*)")]
public void GivenTheSecondNumberIs(int number)

(continues on next page)

72 Chapter 15. Bind remaining steps



Welcome to the Step-By-Step Getting Started Guide!

(continued from previous page)

{
_calculator.SecondNumber = number;

}

[When("the two numbers are added")]
public void WhenTheTwoNumbersAreAdded()
{

_result = _calculator.Add();
}

[Then("the result should be (.*)")]
public void ThenTheResultShouldBe(int result)
{

Assert.Equal(result, _result);
}

}
}

5- Build the solution. The build should succeed.

6- Run the test again.

The test should execute and fail, this is expected. In the Test Detail Summary pane of Test Explorer you can see that
the first two “Given” steps executed successfully and the “When the two numbers are added” step failed with an error :
The method or operation is not implemented. This is because the addition method of the calculator is not implemented
yet.

In the next step you’ll fix the implementation of the calculator to fix this error.

73



Welcome to the Step-By-Step Getting Started Guide!

74 Chapter 15. Bind remaining steps



CHAPTER 16

Fix implementation

3 minutes

In this step you’ll fix the implementation error of the calculator in the previous page.

1- Open Calculator.cs in the SpecFlowCalculator class library and replace the implementation of the Add
method with the below code:

public int Add()
{

return FirstNumber + SecondNumber;
}

75



Welcome to the Step-By-Step Getting Started Guide!

2- Build the solution. The build should succeed.

3- Run the test. The test should now execute and succeed with the green tick marks indicating no errors:

76 Chapter 16. Fix implementation



Welcome to the Step-By-Step Getting Started Guide!

The automation phase is finished, in the next step you’ll learn how to generate living documentation for reporting
purposes.

77



Welcome to the Step-By-Step Getting Started Guide!

78 Chapter 16. Fix implementation



CHAPTER 17

Add Living Documentation

5 minutes

In this step you’ll learn how to generate a living documentation from your test execution results so you can easily
share them with your team.

1- Open a Command Prompt.

2- Install the LivingDoc CLI as a global dotnet tool.

dotnet tool install --global SpecFlow.Plus.LivingDoc.CLI

3- Navigate to the output directory of the SpecFlow project. In this example the solution was setup in the
C:\projects folder.

79



Welcome to the Step-By-Step Getting Started Guide!

cd C:\projects\SpecFlowCalculator\SpecFlowCalculator.Specs\bin\Debug\netcoreapp3.1

4- Run the LivingDoc CLI by using the below command to generate the HTML report.

livingdoc test-assembly SpecFlowCalculator.Specs.dll -t TestExecution.json

*Note if you run into issues here, e.g your JSON file name is FeatureData.JSON instead of TestExecution.JSON, this
indicates you have an older version of the CLI tool. Please check our migration guide here to upgrade to the latest
version.

5- Open the generated HTML with your favorite browser. The HTML file is stored in the same folder as the output
directory of the SpecFlow project.

C:\projects\SpecFlowCalculator\SpecFlowCalculator.Specs\bin\Debug\netcoreapp3.
→˓1\LivingDoc.html

Review the living documentation of the calculator features that you have implemented. Select the “Calculator” feature
in the tree. On the right pane check the detailed description of the feature and the scenarios. You can also see the
“green” test execution result of the scenarios and steps.

80 Chapter 17. Add Living Documentation

https://docs.specflow.org/projects/specflow-livingdoc/en/latest/Guides/Generator-Migration-v3.4-v3.5.html


Welcome to the Step-By-Step Getting Started Guide!

Check the test result summary by clicking on the “Analytics” tab:

81



Welcome to the Step-By-Step Getting Started Guide!

SpecFlow+LivingDoc is packed with great features that truly bring your documentation to life! To read more about
SpecFlow+LivingDoc and its features, please visit our LivingDoc documentation page.

82 Chapter 17. Add Living Documentation

https://docs.specflow.org/projects/specflow-livingdoc/en/latest/index.html


CHAPTER 18

Final

CONGRATULATIONS!

You have now successfully created and tested your first SpecFlow project.

We have put together a little exercise for you to test your newly acquired skills, check it out here.

Check out our examples page if you are looking for additional sample projects. We have also put together a sample
project using Selenium for UI automation, you can find it here.

To keep up to date with the latest on SpecFlow Join the SpecFlow Community.

83

https://docs.specflow.org/en/latest/Examples.html
https://docs.specflow.org/projects/specflow/en/latest/ui-automation/Selenium-with-Page-Object-Pattern.html
https://specflow.org/community/


Welcome to the Step-By-Step Getting Started Guide!

84 Chapter 18. Final



CHAPTER 19

Exercise

15 minutes

In this step it is your turn to implement the subtraction feature of the calculator.

1- Add the following scenario to the Calculator.feature file.

Scenario: Subtract two numbers
Given the first number is 120
And the second number is 70
When the two numbers are subtracted
Then the result should be 50

2- Build the solution. The build should succeed.

3- Run the tests. Notice that you have now 2 tests (corresponding to
your two scenarios) and the second scenario is “Skipped” because of missing

85



Welcome to the Step-By-Step Getting Started Guide!

bindings.

4- Click on the “Open additional output for this result” and review the details of the scenario

execution.

Now it is your turn to implement the subtraction feature in three short steps:

1. First add the missing binding (with the minimum code structure necessary) to get a red scenario.

2. Next turn the scenario green by actually implementing the subtraction logic in the calculator.

3. Refactor your implementation if necessary (scenarios should remain green).

Did it work out?

Check the next step for a possible solution.

86 Chapter 19. Exercise



CHAPTER 20

Exercise-solution

10 minutes

In this step you can review the solution for the challenge in the previous step (implementing the subtraction in the
calculator).

To recap the 3 steps to implement the new feature:

1. First add the missing bindings (with the minimum code structure necessary) to get a red scenario.

2. Next turn the scenario green by actually implementing the logic.

3. Refactor the implementation if necessary (scenarios should remain green).

The first step is to add the missing binding and necessary code to have a red scenario. A quick way of gener-
ating the necessary binding methods is to you right-click the unbound step in the feature file and select “Go To

87



Welcome to the Step-By-Step Getting Started Guide!

Definition”.

If SpecFlow does not find the corresponding binding method it offers to generate the skeleton of the binding method

into your clipboard.

Now you can easily paste the method into the binding class and change the implementation.

[When(@"the two numbers are subtracted")]
public void WhenTheTwoNumbersAreSubtracted()
{

_result = _calculator.Subtract();
}

To be able to implement the binding in a meaningful way you have to extend the public interface of the calculator as
well to support the subtraction. However, in the first step, your only goal is to get to an executable red scenario. Hence
you have to add a Subtract method to the calculator, but the implementation should be skipped e.g. by throwing a
NotImplementedException. Note that in this case the scenario will fail in the “When” step already due to the
exception and the “Then” step will be skipped.

88 Chapter 20. Exercise-solution



Welcome to the Step-By-Step Getting Started Guide!

using System;

namespace SpecFlowCalculator
{

public class Calculator
{

public int FirstNumber { get; set; }
public int SecondNumber { get; set; }

public int Add()
{

return FirstNumber + SecondNumber;
}

public int Subtract()
{

throw new NotImplementedException();
}

}
}

Alternatively you can return a dummy value (e.g. constant 0). In this case the scenario will also run the “Then” step
and fail on the assertion. This is especially beneficial if you’ve just created the binding of the Then step too and you
want to make sure that the binding works as expected.

public int Subtract()
{

return 0;
}

If you build the solution and run the tests the scenario should be red and you’re ready to move on to the second step.

The second step is to implement the subtraction of the calculator to get the scenario green.

public int Subtract()
{

return FirstNumber - SecondNumber;
}

If you run the tests again the scenario should be green.

The last step is to refactor the code while keeping all scenarios green. However, in this case the implementation is so
simple that we can skip the refactoring step now.

89



Welcome to the Step-By-Step Getting Started Guide!

90 Chapter 20. Exercise-solution



CHAPTER 21

Additional resources

Want to learn more?

• Learn Gherkin

– What is Gherkin?

– Given-When-Then with Style Challenge

– Gherkin Reference

• Architectures & Good Practices

– Getting started with the BookShop example

• Automation Patterns

– Page Object Pattern

– Driver Pattern

• Example code

– SpecFlow Examples

– Given-When-Then with Style challenges

* Challenge 1-2

* Challenge 7

* Challenge 8

• Example Projects

– Examples

Need Help?

• Forum

• Trainers

• Online Courses

91

https://specflow.org/bdd/gherkin/
https://specflow.org/blog/the-given-when-then-with-style-challenge/
https://docs.specflow.org/projects/specflow/en/latest/Gherkin/Gherkin-Reference.html
https://docs.specflow.org/projects/specflow/en/latest/Getting-Started/Getting-Started-With-An-Example.html
https://docs.specflow.org/projects/specflow/en/latest/Guides/PageObjectModel.html
https://docs.specflow.org/projects/specflow/en/latest/Guides/DriverPattern.html
https://github.com/SpecFlowOSS/SpecFlow-Examples
https://github.com/SpecFlowOSS/gwt-with-style-challenge1-2
https://github.com/SpecFlowOSS/gwt-with-style-challenge7
https://github.com/SpecFlowOSS/gwt-with-style-challenge8
https://docs.specflow.org/en/latest/Examples.html
https://support.specflow.org/hc/en-us/community/topics
https://specflow.org/trainers/
https://specflow.org/online-courses/

	Install Visual Studio extension
	Create calculator project
	Create SpecFlow project
	Create SpecFlow project - Continue
	Bind the first step
	Bind remaining steps
	Fix implementation
	Add Living Documentation
	Final
	Install JetBrains Rider Plugin
	Create calculator project
	Create SpecFlow project
	Create SpecFlow project - Continue
	Bind the first step
	Bind remaining steps
	Fix implementation
	Add Living Documentation
	Final
	Exercise
	Exercise-solution
	Additional resources

