SpecFlow+ LivingDoc

Feb 08, 2022

Step-by-step guides

10

11

12

13

14

15

16

17

18

19

20

Step-by-step guide for LivingDoc Azure DevOps
Step-by-step guide for LivingDoc Generator
Generating LivingDoc for Azure DevOps
Azure DevOps extension installation
Adding a Build Step

Configuring the Build Step in DevOps
Configuring the Build Step in YAML
Generating LivingDoc using CLI

LivingDoc Plugin Setup

Installing the CLI tool

Using the CLI tool

livingdoc feature-folder

livingdoc test-assembly

livingdoc feature-data

Azure DevOps Extension

Generator - CLI Tool

Test results

Analytics

Unused Step Definitions

Finding keywords in LivingDoc

13

15

17

19

23

27

29

31

33

35

39

43

47

49

51

55

57

61

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Embedding Images & Markdown

Linking within LivingDoc

Link to ALM systems

Editing Feature Files in Azure DevOps
Documentation Languages

Adding branch name to LivingDoc

Output API

Sharing & Publishing SpecFlow+LivingDoc
SpecFlow+LivingDoc Generator Migration v3.4 to v3.5
Troubleshooting

Merging Multiple Test Results

LivingDoc in AzDo release pipeline

Storing Images in Azure Blob Storage
Azure DevOps Extension

LivingDoc Generator

Known issues and limitations

65

69

71

73

75

77

81

83

85

87

89

91

95

99

105

111

SpecFlow+ LivingDoc

SpecFlow+LivingDoc is a set of tools that allows you to share and collaborate on Gherkin Feature Files with stake-
holders who may not be familiar with developer tools.

SpecFlow+LivingDoc gives you the option to generate & share living documentation in two configurable ways:

e SpecFlow+LivingDoc for Azure DevOps: If your team uses Azure DevOps then we suggest installing our dedi-
cated extension to help you generate and share LivingDoc within the familiar Azure DevOps interface.

e SpecFlow+LivingDoc Generator: If you want to generate a self-hosted HTML documentation with no exter-
nal dependencies so you have the freedom to share it as you wish, then we suggest the SpecFlow plugin and
command-line tool.

Note: You will find all the information related to LivingDoc on this page. If you are new to LivingDoc, check out the
Step-by-step guides section to get started.

Sample output:

Bookshop

Living Documentation Analytics

{ o Qautomated @WI7

S Fitter by Keyword Filter by Scenario Result
@ Feature: Displaying Home Screen
} Test results (D)
As a potential customer
I BookShop.AcceptanceTests ®3Passed @ DFailed ® 0 Others T uant to see the books with the best price
So that I can save money on buying discounted books.
v B Features ® 8 Passed @ OFailed ® 0Others
> ™ Setup Testenvironment ®1Passed @ OFsiled © 0OCthers Background:
> ™ Shopping Cart ®4Passed @ QFailed © 0Cthers Given the following books
@ Displaying Home Screen Title Price
@ Cheapest 3 books should be listed on the home scraen Analysis Patterns 50.20
@ Cheapest 3 bocks should be listed on the home screen {list syntax) Domain Driven Design 46.34
@ Cheapest 3 books should be listed on the home screen (table syntax) Inside Windows SharePoint Services 31.49
> @ Displaying book details Bridging the Communication Gap ~ 24.75
> @ Searching for books
¢ = @automated = @WI7
@ Scenario: Cheapest 3 books should be listed on the home screen s 156ms

~ When | enter the shop

~" Then the home screen should show the book 'Bridging the Communication Gap'
~ And the home screen should show the book 'Inside Windows SharePoint Services’

~" And the home screen should show the book ‘Domain Driven Design’

Step-by-step guides 1

SpecFlow+ LivingDoc

2 Step-by-step guides

CHAPTER 1

Step-by-step guide for LivingDoc Azure DevOps

1.1 Step 1 - Installation

1- Go to the SpecFlow+LivingDoc page on the Visual Studio marketplace and install the free extension. Since this
extension is tied to Microsoft Azure DevOps, you will need to sign in with your Microsoft account.

SpecFlow+LivingDoc

SpecFlow Team

I Specklow+LivingDoc Visual Studio Services extension.

Once the installation finishes, you will see the SpecFlow+ LivingDoc menu item show up under the overview section
of Azure DevOps:

https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus

SpecFlow+ LivingDoc

T:J Azure DevOps

BookShop +

ﬂ Overview

™ Summary

Eﬂ Dashboards
B wiki

| SpecFlow+ LivingDoc

2- The first time you click on SpecFlow+ LivingDoc from the overview pane, you will also be asked to sign up for a
SpecFlow account. Click on Sign in with Microsoft and follow the instruction to create a free SpecFlow account.

4 Chapter 1. Step-by-step guide for LivingDoc Azure DevOps

SpecFlow+ LivingDoc

SpecFlow- LivingDoc

SpecFlow+ LivingDoc turns Gherkin features files into living
documentation you can share with your stakeholders.

=. Sign in with Microsoft

3- If you want to generate LivingDoc with test execution results you also need to install the SpecFlow.Plus.LivingDoc
Plugin for your SpecFlow project. The plugin will generate the necessary JSON file that will carry the test results data.

1.2 Step 2 - Build step

The next step is to add the build step to your pipelines. You have two options here, you can either use a YAML file
to configure the build step or use the Azure DevOps interface. For the purpose of this guide, we will use the Azure
DevOps interface as it is easier to use. If you like to use a YAML file you can find all the details /ere.

Before we move on, it is also important to note that the build step only generates the documentation; it does not execute
any tests or build your solution.

1- Navigate to the desired pipeline from the list (or add a new one) and select Edit.

1.2. Step 2 - Build step 5

https://www.nuget.org/packages/SpecFlow.Plus.LivingDocPlugin
https://www.nuget.org/packages/SpecFlow.Plus.LivingDocPlugin

SpecFlow+ LivingDoc

Recent Al Runs S Filter pipelines

Recently run pipelines

Pipeline Last run
#1880 = Update All fi
= Update All on same page.feature & 10m ago .
° LivingDoc for Documentat... B ; @ ’ e @
7 Batched Cl ¥ master 31s
- Edit
#20200309.4 » Update azure-pipelines.yml| for Az... B 16 ——
° SpecFlowPlus.Test N . -
Y, Manually triggered ¥ feature/pr-test 11 Run pipeline
#1868 - Add different image with same name 8 Th Manage security
° SpecFlowPlus.Demo-Cl N . @
%, Manually triggered & test 31 Rename/move
#1866 = Updated Bookstore.feature B w Delete
@ GitSpecFlowPlusTest - ID... _ 5
Y, Manually triggered ¥ master-pr 145
2- Add the SpecFlow+ build step as per below:
specflow-demo SpecFlowPlus.Documentation Pipelines P search = E_U @ A, .
& - > SpecFlowPlus.Documentation-Cl
Tasks || Variables Triggers Options Retention History Save & queue ™ 7
Pipeline
Build pipeline O
Add tasks 0 Refresn |4 2PEhow -
== @Get sources
T o SpecFiow® aster

Q SpecFlow+LivingDoc
/9

ig_entjob = SpecFlow-+LivingDoc
& Run ent build step.

Marketplace

o mb4&DED + @ 0

¥

1.3 Step 3 - Configuration

The main point to keep in mind during the build step configuration is whether you want to generate LivingDoc with
or without test execution results. This depends on what stage of development journey you are in. Remember you can
always hide your test results using the toggle, see point 4 /ere for more info.

Let’s take a quick look at the main configs:

6 Chapter 1. Step-by-step guide for LivingDoc Azure DevOps

SpecFlow+ LivingDoc

Tasks Variables Triggers Options Retention History = Summary [» Queue ---
Pipeline Source* =~
== Getsources N
) SpecFlow0sS/SpecFlow-Examples naste Feature folder * @
ASP.NET-MVC\BookShop\BookShop.AcceptanceTests
Agent job 1

Advanced settings ~

E Rfrsircrlrre Project Name (7)
e
S Test Execution JSON paths (D) _n

Test
E T o $(Build.SourcesDirectory)\ASP.NET-MVC\BookShop\BookShop.AcceptanceTests\bin\Debug\netcoreapp3.1\TestExecutionjson
Publish Pipeline Artifact 4
Project Language (7
Q SpecFlow+ build step. (-]
% SpecFiows LivingDoc i English 7
Work Item Prefix (D
Wi

Work Item URL Template (D)

Binding Assemblies () ‘n

Output file path (3

A - There are 3 sources to pick from to parse the documentation data:

Feature folder - The folder containing the feature files. Use the test project root folder if you want to include test
execution results.

Test Assembly - Relative or absolute path to the test assembly. Glob patterns are supported e.g.: MyPro-
ject**\MyProject.dll

Feature Data - Relative or absolute path to the feature data JSON file. Glob patterns are supported e.g.: MyPro-
ject**\FeatureData.json

B - Enter the path to the generated JSON file by the SpecFlow.Plus.LivingDoc Plugin. This file carries all the necessary
data needed for SpecFlow+LivingDoc to display your test results and is generated when you run your tests. Therefore,
if you want to generate LivingDoc with test results, this step is mandatory.

C - If you are interested to see the Unused Step Definitions in the analytics tab, enter your Binding Assembly paths
(newline delimited) here. If your bindings are in the same assembly as your feature files you don’t have to specify this
field.

We have covered the basics here to get you going and generating your documentation. There are a number of other
configurations here, you can find further details on them here.

1.4 Step 4 - Viewing LivingDoc

1- Once the configurations are done and the pipeline run is finished, simply navigate to the overview section of Azure
DevOps as per step 1 and click on SpecFlow+LivingDoc.

2- You will find your LivingDoc here. Make sure you check out the Viewing LivingDoc & Test results sections to read
about all the features and options you have here. The Enhancing LivingDoc section in docs also provides additional
information on functionalities such as Markdown and Embedding images.

1.4. Step 4 - Viewing LivingDoc 7

https://www.nuget.org/packages/SpecFlow.Plus.LivingDocPlugin

SpecFlow+ LivingDoc

Azure DevOps

J
B specriowPlus.Demo + SpecFlow+ LivingDoc &
© Bookshop 8 master v
P
ﬂ Overview
Living Documentation Analytics
= Summary
< @automated
LE Dashboards S Filter by Keyword It Filte ~ o8
8 @ Feature: Displaying book details £
Wiki i Test results .)
As 3 potential customer
SpecFlow+ LivingDoc ~ % BookShop.AcceptanceTests @ GPassed @ 0Faled ©0Others 1 .\‘ang to see the details of a book
So that I can better decide to buy it
~ I Features ®5Passed @ OFalled © 0 Others Y
Boards
> M Setup Testenvironment ®1Passed @ 0Faiied ® 0 Others Background:
Repos > B Shopping Cart @ 4Passed @ 0Fsied ©0Others Given the following books
Pipelines > @ Displaying Home Screen Author Title Price

> @ Displaying book details Martin Fowler Analysis Patterns 50.20

Test Pl — .
est Plans 5 @ Searching for books EricEvans Domain Driven Design 4634

Ted Pattison Inside Windows SharePoint Services 31.49

B4 DAE

Artifacts
Gojko Adzic Bridging the Communication Gap 2475

@ @automated = @WI9

@ Scenario: The author, the title and the price of a book can be seen 1z 53ms 12

~* When | open the details of ‘Analysis Patterns’

~ Then the bock details should show
Author Title Price

Martin Fowler Analysis Patterns 50.20

8 Chapter 1. Step-by-step guide for LivingDoc Azure DevOps

CHAPTER 2

Step-by-step guide for LivingDoc Generator

The LivingDoc Generator enables you to generate living documentation in HTML format with no external dependen-
cies.

2.1 Step 1 - Installation

1- Setup the SpecFlow.Plus.LivingDoc Plugin for your SpecFlow project (if you have created the project using the
SpecFlow Visual Studio project template, this dependency should already be there).

> Note: This plugin is only required if you want to generate living documentation with test results, otherwise you
can skip this plugin installation and only install the command line tool below. In this example we will be generating
LivingDoc with test results.

2- Next, open a command prompt and run the following command to install the CLI tool, this is a mandatory installa-
tion:

dotnet tool install --global SpecFlow.Plus.LivingDoc.CLI

Command Prompt

--global SpecFlow.Plus.LivingDoc.C

2.2 Step 2 - Generate LivingDoc

1- Navigate to the path where your SpecFlow project is located. In this example, the solution was set up in the
C:\work folder:

https://www.nuget.org/packages/SpecFlow.Plus.LivingDocPlugin
https://docs.specflow.org/projects/specflow/en/latest/Installation/Project-and-Item-Templates.html

SpecFlow+ LivingDoc

cd C:\work\SpecFlowCalculator\SpecFlowCalculator.Specs\bin\Debug\netcoreapp3.1

CLI tool installation

\alimo>dotnet tool install --global SpecFlow.Plus.Li

output directory

s\alimo>cd C:\ \SpecFlowCalculatc ecFlowCalculato \ \Debug\netcoreapp3.1

cFlowCalculator\SpecFlowCalculator.s in\Debug\netcoreapp3.1>

2- Now you can run the LivingDoc CLI by using the below command to generate the report.

livingdoc test-assembly SpecFlowCalculator.Specs.dll -t TestExecution. json

> Note: As mentioned in step 1 the TestExecution.json file is generated by installing the
SpecFlow.Plus.LivingDoc Plugin for your SpecFlow project and holds the tests results. By default,
TestExecution. json will be generated in the test assembly folder of your project when you execute your tests
e.g.: SpecFlowCalculator.Specs\bin\Debug\netcoreapp3. I\TestExecution.json.

CLI tool installation

rs\alimo>dotnet tool install --global

output directory

s\alimo>cd C:\ <\SpecFlowCalculatc FlowCalculato \Debug\netcoreapp3.1

C: \work\SpecFlowCalculator\SpecFlowCalculator in\Debug\netcoreapp3.1> doc test-assembly SpecFlowCalculator.Specs.dll -t TestExecution.json

cFlowCalculato ecFlowCalculator \Debug\netcoreapp3
generate LivingDoc

> Note: We are generating LivingDoc with test results here, hence why we are using the rest-assembly command.
Removing -t TestExecution. json part of the command will allow you to generate LivingDoc without test
results. Check feature-data and feature-folder for alternative commands.

2.3 Step 3 - Viewing LivingDoc

1- The command-line tool will generate an HTML file titled LivingDoc.html in the same folder as the output
directory of the SpecFlow project. You can manually navigate to this folder and open this file in your favorite
browser or use the command-line tool to do it:

C:\work\SpecFlowCalculator\SpecFlowCalculator.Specs\bin\Debug\netcoreapp3.
—1\LivingDoc.html

> Note: Check here for more info on how to change the output directory of LivingDoc CLI tool.

10 Chapter 2. Step-by-step guide for LivingDoc Generator

https://www.nuget.org/packages/SpecFlow.Plus.LivingDocPlugin
https://docs.specflow.org/projects/specflow-livingdoc/en/latest/LivingDocGenerator/Using-the-command-line-tool.html#simple-options

SpecFlow+ LivingDoc

Make sure you check out the Viewing LivingDoc & Test results sections to read about all the features and options you
have here.

Here is sample LivingDoc file:

2.3.1 Sharing LivingDoc

One of the key usage scenarios of LivingDoc is to help teams collaborate and form a shared understanding in their de-
velopment journey. Therefore, sharing the generated LivingDoc file plays an important role. The generated LivingDoc
can easily be shared in numerous ways depending on your team’s current infrastructure setup and needs.

Please visit the Sharing & Publishing page for some ideas and options on how to share LivingDoc.

2.3. Step 3 - Viewing LivingDoc 11

SpecFlow+ LivingDoc

12 Chapter 2. Step-by-step guide for LivingDoc Generator

CHAPTER 3

Generating LivingDoc for Azure DevOps

In order to generate living documentation from your feature files using Specflow in Azure DevOps, you need to:
1 - Install the Azure DevOps Extension.

2 - Define a build step that references your project.

3 - Queue the build.

4 - View your documentation.

The configurations in each of these steps will help you truly customize Livingdoc to bring real value to you and your
team.

13

https://docs.specflow.org/projects/specflow-livingdoc/en/latest/Installation/Installation.html

SpecFlow+ LivingDoc

14 Chapter 3. Generating LivingDoc for Azure DevOps

CHAPTER 4

Azure DevOps extension installation

1- Visit the SpecFlow+ LivingDoc page on the Visual Studio marketplace.
2- Click on the Get it free button and proceed with the installation as you would with any other extension.

Refer to Microsoft documentation if you are having issues installing an extension:Installing Azure DevOps Exten-
sionsInstalling Azure DevOps Server Extensions

3- You should now see the “SpecFlow+ LivingDoc” menu item under “Overview” in each of your projects:

15

https://marketplace.visualstudio.com/items?itemName=techtalk.techtalk-specflow-plus
https://www.visualstudio.com/en-us/docs/marketplace/get-vsts-extensions
https://www.visualstudio.com/en-us/docs/marketplace/get-vsts-extensions
https://www.visualstudio.com/en-us/docs/marketplace/get-tfs-extensions

SpecFlow+ LivingDoc

l:' Azure DevOps

. BookShop -+

ﬂ Overview

™ Summary

Eﬂ Dashboards
B wiki

| SpecFlow+ LivingDoc

16 Chapter 4. Azure DevOps extension installation

CHAPTER B

Adding a Build Step

Generating living documentation from your Gherkin files with SpecFlow+ LivingDoc requires you to add the
SpecFlow+ build step to your build process. This build step parses the Gherkin files in your solution and formats
them for display in DevOps/VSTS/TFS.

The build step requires .NET Core 3.1 installed on the build agent. If you use Microsoft hosted agents it is automati-
cally available. Alternatively you can use the Use .NET Core task to install the .NET Core version.

Please note the build step only generates the documentation; it does not execute any tests or build your solution.
There are two ways to configure the build step, see the appropriate chapter depending on the type of build:

* Build step configured in DevOps/TFS/VSTS: See Configuring-the-Build-Step-in-DevOps

* YAML build step: See Configuring the Build Step in YAML

Note: You do not need to use DevOps/VSTS/TES to actually build your application. You can simply add a build
definition that acquires the sources and generates the documentation.

17

https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/tool/dotnet-core-tool-installer?view=azure-devops
Configuring-the-Build-Step-in-DevOps

SpecFlow+ LivingDoc

18 Chapter 5. Adding a Build Step

CHAPTER O

Configuring the Build Step in DevOps

To add the build step in Azure DevOps:

1 - Select Pipelines | Pipelines from the menu in Azure DevOps.

2 - Locate the desired pipeline from the list (or add a new one) and select Edit.

Pipelines

Recent All Runs

Recently run pipelines

Pipeline

Last run

° LivingDoc for Documentat...

#1880 = Update All on same page.feature

7 Batched C| ¥ master

New pipeline

S’ Filter pipelines

p—
& 10m ago c
@ 31s * @

° SpecFlowPlus.Test

° SpecFlowPlus.Demo-Cl

° Git SpecFlowPlus.Test - LD...

#20200309.4 - Update azure-pipelines.yml| for Az...

% Manually triggered ¥ feature/pr-test

#1868 - Add different image with same name

. Manually triggered ¥ test

#1866 - Updated Bookstore.feature

% Manually triggered ¥ master-pr

3 - The current tasks are displayed under the Tasks tab

4 - Click on the plus icon next to your agent to add a new build step.

B 16—

@ 1"

B Th
@ 3

Bw
@ 14s

Edit

Run pipeline
Manage security
Rename/move

Delete

5 - Look for “Specflow” in the search bar and add the SpecFlow+ LivingDoc build step to your build:

19

SpecFlow+ LivingDoc

specflow-demo SpecFlowPlus.Documentation Pipelines 2 Search

il
[
&

@ - > SpecFlowPlus.Documentation-Cl

Tasks || Variables Triggers Options Retention History Save & queue ~ Ve

Pipeline
Build pipeline o O Specflov X
Add tasks) Refresh |~ pectiow

== (et sources

o SpecFlowPlus,Documentation B mastel

D SpecFlow+LivingDoc

Agent job 1 B Sne

Marketplace

e b4t PEDR+B@C

¥

Once you add the SpecFlow + LivingDoc build step you will be prompted to setup the build configuration:

Tasks \Variables Triggers Options Retention History = Summary [» Queue

k.

Source * @
I@ Featul

Feature folder* (@

Pipeline

== Getsources
©) SpecFlowO55/SpacFlow-Examples

ASP.NET-MVC\BookShop'BookShop.AcceptanceTests
Agent job 1
= Runan agene Advanced settings ~

Rf_ﬂfze Project Name (3) /ﬂ
3
o Test Execution JSON paths (D j

Test
M ET Core $(Build.SourcesDirectory)\ASP.NET-MVC\BookShop\BookShop.AcceptanceTests\bin\Debuginetcoreapp3.1\TestExecutionjson

n Publish Pipeline Artifact P

Project Language (3) 4
o

D SpecFlow+ build step.
SpecFlow-LivingDoc English e

Work Item Prefix (O j

Wi
Work Item URL Template (D) 4
Binding Assemblies (3) 4

Output file path (3 ‘n

A - There are 3 sources to pick from to parse the documentation data:

Feature folder - The folder containing the feature files. Use the test project root folder if you want to include test
execution results.

> Note: If you pick “Feature Folder” as your source, you will be able to edit feature files directly within AzDo.

Test Assembly - Relative or absolute path to the test assembly. Glob patterns are supported e.g.: MyProject/x*/
MyProject.dll

Feature Data - Relative or absolute path to the feature data JSON file. Glob patterns are supported e.g.: MyProject/

20 Chapter 6. Configuring the Build Step in DevOps

SpecFlow+ LivingDoc

*x/FeatureData. json

B - Enter a Project Name. This name is used by the root node in the tree. If you do not enter a name here, the name
of the Visual Studio project is used by default.

C - If you want to include test execution results in the report, you must specify the Test Execution JSON paths. It has
to be an absolute or relative path to the Test Execution JSON files generated by the SpecFlow.Plus.LivingDocPlugin.
Glob patterns are only supported when you use a relative pathe.g.: M\yProject/++/TestExecution. json

Important: If you pick Feature folder as your source and want to display the execution results, you MUST provide
the Test Project Root folder.

Note: If you have multiple JSON files, i.e. when you run tests in parallel, you may add them all here. To
do so, add the path to each JSON file in a separate line (new line delimited).

D - Select the language used by your Gherkin files under Project Language. This is optional because in most cases
the language can be auto- detected. You can read more about language options here.

E - If you have added /inks to Azure DevOps work items in your feature files using tags, enter the prefix used to
identify the work items here.

For example, if you enter “DEVOPS_WI.” as the work item prefix and define the tag “@DEVOPS_WI:1234” in your
feature file, the tag will link to work item #1234 when displayed in LivingDoc.

F - Enter the URL to the specified work item here. Example : https://dev.azure.com/fabrikam/FabrikamProj/_workitems/edit/{id }

G - If you are interested to see the Unused Step Definitions in the analytics tab, enter your Binding Assembly paths
(newline delimited) here. If your bindings are in the same assembly as your feature files you don’t have to specify this
field.

Glob patters are supported e.g.: MyProject/+x/MyBindings.dll.
H - You can configure the output path of LivingDoc here.
Once you have defined all the required fields in your build step, you can queue the build.

> Note: If you want to include Gherkin files from multiple projects, add a separate build step for each of your projects.

21

https://www.nuget.org/packages/SpecFlow.Plus.LivingDocPlugin

SpecFlow+ LivingDoc

22 Chapter 6. Configuring the Build Step in DevOps

CHAPTER /

Configuring the Build Step in YAML

Learn how to configure the build step in a YAML file.

Before you proceed, note that YAML is whitespace sensitive. Please copy and paste the example in a text editor with
syntax highlighting (e.g. Notepad++).

For information on the YAML schema, see the Microsoft reference guide for Azure Pipelines YAML schema.

7.1 SpecFlow+LivingDoc custom build step YAML snippet

- task: SpecFlowPlus@0
inputs:
#generatorSource: 'FeatureFolder' # Required. Options: FeatureFolder,
—TestAssembly, FeatureData
#projectFilePath: # Required when generatorSource == FeatureFolder
#testAssemblyFilePath: # Required when generatorSource == TestAssembly
#featureDatadsonFilePath: # Required when generatorSource == FeatureData
#projectName: # Optional
#testExecutiondson: # Optional
#projectLanguage: 'en' # Optional
#workItemPrefix: # Optional
#workItemUrlTemplate: # Optional
#bindingAssemblies: # Optional
#output: # Optional

7.2 Arguments

7.3 Non-LivingDoc specific parameters

¢ enabled: boolean (not needed when true)

23

https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema?view=azure-devops&tabs=schema#task

SpecFlow+ LivingDoc

¢ continueOnError: boolean (not needed when false)
¢ condition:

* timeoutInMinutes: Specifies the maximum time, in minutes, that a task is allowed to execute before being
canceled by server (zero value indicates an infinite timeout)

7.4 Examples

7.4.1 FeatureFolder example

- task: SpecFlowPlus@0

displayName: 'LivingDoc with FeatureFolder generatorSource'

inputs:
generatorSource: 'FeatureFolder'
projectFilePath: 'BookShop.AcceptanceTests'
projectName: 'testName'
testExecutiondson: 'BookShop.AcceptanceTests/++/TestExecution. json'
projectLanguage: 'en'
workItemPrefix: 'WI'

workItemUrlTemplate:

bindingAssemblies: |

enabled:
continueOnError: true
condition: always ()
timeoutInMinutes: 10

false

'https://dev.azure.com/specflow/BookShop/_workitems/edit/{id}

7.4.2 TestAssembly example

- task: SpecFlowPlus@0
displayName:
inputs:

generatorSource:
testAssemblyFilePath:

—dll'

projectName:
testExecutionJdson:
projectLanguage: 'en'
workItemPrefix: 'WI'
workItemUrlTemplate:

bindingAssemblies:
enabled: false
continueOnError: true
condition: always /()
timeoutInMinutes: 10

'LivingDoc with TestAssembly generatorSource'

'TestAssembly’

'BookShop.AcceptanceTests/bin/+*/BookShop.AcceptanceTests.

'testName'
'BookShop.AcceptanceTests/++/TestExecution. json'

'https://dev.azure.com/specflow/BookShop/_workitems/edit/{id}

'BookShop.AcceptanceTests/**/MyBindings.dll"

24

Chapter 7. Configuring the Build Step in YAML

SpecFlow+ LivingDoc

7.4.3 FeatureData example

- task: SpecFlowPlus@0
displayName: 'LivingDoc with FeatureData generatorSource'

inputs:
generatorSource: 'FeatureData'
featureDataJdsonFilePath: './«xx/FeatureData.json'

testExecutiondson: 'BookShop.AcceptanceTests/x*/TestExecution. json'
workItemPrefix: 'WI'
workItemUrlTemplate: 'https://dev.azure.com/specflow/BookShop/_workitems/edit/{id}

bindingAssemblies: |
BookShop.A
BookShop.A
enabled: false
continueOnError: true
condition: always ()
timeoutInMinutes: 10

sptanceTests/+x/BookShop. 2

eptanceTests.dll

eptanceTests/»*/MyBindings.dll

7.4.4 Example of output

Specify output file name as MyFeatureData. json and place it in the LivingDoc directory. If the directory is
not exists, the tool will create it.

- task: SpecFlowPlus@0

displayName: 'LivingDoc with custom output'

inputs:
generatorSource: 'FeatureFolder'
projectFilePath: 'BookShop.AcceptanceTests'
projectName: 'testName'
testExecutiondson: 'BookShop.AcceptanceTests/++/TestExecution. json'
projectLanguage: 'en'
workItemPrefix: 'WI'
workItemUrlTemplate: 'https://dev.azure.com/specflow/BookShop/_workitems/edit/{id}

bindingAssemblies: |
BookShop.A

BookShop.AcceptanceTests/**/M

>ptanceTests/ **/Bc 5.d1l1

>okShop . Ac

yBindings.dll
output: 'LivingDoc/MyFeatureData. json'

enabled: false

continueOnError: true

condition: always /()

timeoutInMinutes: 10

7.4. Examples 25

SpecFlow+ LivingDoc

26 Chapter 7. Configuring the Build Step in YAML

CHAPTER 8

Generating LivingDoc using CLI

SpecFlow+LivingDoc Generator allows you to generate a local or self-hosted HTML of your Gherkin Feature Files
without the need of Azure DevOps. You also have the option to generate documentation with or without test results.

8.1 Generation excluding test results

In order to generate your living documentation without test execution results, you need to:
1. Install the command line tool

2. Execute the command line tool to generate the documentation.

8.2 Generation including test results

In order to generate your living documentation with test execution results, you need to:

1. Setup the SpecFlow.Plus.LivingDocPlugin for your SpecFlow project (if you have created the project using the
SpecFlow Visual Studio project template, this dependency should already be there).

2. Build your project.

3. Run your tests. This will generate a TestExecution.json next to your TestAssembly which is needed in the next
step.

4. Install the command line tool

5. Execute the command line tool and make sure to pass the test execution JSON files to the CLIL.

27

https://docs.specflow.org/projects/specflow/en/latest/Installation/Project-and-Item-Templates.html

SpecFlow+ LivingDoc

28 Chapter 8. Generating LivingDoc using CLI

CHAPTER 9

LivingDoc Plugin Setup

If you want to generate LicingDoc with test results you must install this plugin, otherwise, you may skip this step to
generate LivingDoc without test results.

9.1 Installation

Add the SpecFlow.Plus.LivingDocPlugin NuGet package to your SpecFlow project.

9.2 Configuration

LivingDoc Generator configuration options have a default setting. Simple SpecFlow projects may not require any
further configuration.

9.3 livingDocGenerator

Use this section to extend your specflow. json with LivingDoc Generator configuration.

9.3.1 Placeholder support in filePath

The following placeholders are supported inside the filePath:

* {CurrentDirectory} the current working directory. Note: Add this placeholder if the
TestExecution. json file is not generated to the output directory. This is required in case of xUnit tar-
geting full framework.

e {ProcessId} theId of the current process

¢ {ThreadId} the Id of the current thread

29

https://www.nuget.org/packages/SpecFlow.Plus.LivingDocPlugin

SpecFlow+ LivingDoc

* {Now} the timestamp with the current date and time. The default format is yyyyMMddhhmmss, but it can be
overwritten with format strings. e.g: {Now:yyyy-MM-dd} For an overview of the available format strings,
see Standard Date and Time Format Strings and Custom Date and Time Format Strings in the official Microsoft
documentation.

These placeholders can be used to make the generated file name unique when the tests are running in parallel and the
test runner supports process level isolation like the SpecFlow+Runner. All placeholders are case insensitive, so they
can be used with different casing. e.g: { ThreadId} or {threadid}.

9.3.2 Examples

simple specflow.json example:

{
"livingDocGenerator": ({
"enabled": true,
"filePath": "TestExecution. json"

specflow.json example with CurrentDirectory placeholder:

{

"livingDocGenerator": ({
"enabled": true,
"filePath": "{CurrentDirectory}\\TestExecution. json"

specflow.json example for SpecFlow+Runner using Process isolation:

{

"livingDocGenerator": {
"enabled": true,
"filePath": "TestExecution_{ProcessId}_{ThreadId}_{Now}.json"

30 Chapter 9. LivingDoc Plugin Setup

https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.specflow.org/projects/specflow-runner/en/latest/Usage/Parallel-Execution-Features.html

cHAaPTER 10

Installing the CLI tool

10.1 Prerequisites

SpecFlow.Plus.LivingDoc.CLI requires the .NET Core SDK 3.1 or higher to be installed. Information on setting up
the .NET Core SDK can be found in the official Microsoft guide.

10.2 Installing SpecFlow.Plus.LivingDoc.CLI

To install SpecFlow.Plus.LivingDoc.CLI:
1. Open a command prompt

2. Run the following command:

dotnet tool install --global SpecFlow.Plus.LivingDoc.CLI

10.3 Updating SpecFlow.Plus.LivingDoc.CLI

To update SpecFlow.Plus.LivingDoc.CLI:
1. Open a command prompt.

2. Run the following command:

dotnet tool update --global SpecFlow.Plus.LivingDoc.CLI

10.4 Uninstalling SpecFlow.Plus.LivingDoc.CLI

To uninstall SpecFlow.Plus.LivingDoc.CLI:

31

https://www.nuget.org/packages/SpecFlow.Plus.LivingDoc.CLI
https://www.microsoft.com/net/download

SpecFlow+ LivingDoc

1. Open a command prompt.

2. Run the following command:

dotnet tool uninstall --global SpecFlow.Plus.LivingDoc.CLI

Once you have installed the command line tool, please read the Using the command line tool page to learn how to use
it.

32 Chapter 10. Installing the CLI tool

cHAPTER 11

Using the CLI tool

There are three ways to execute and configure LivingDoc commands depending on where you have stored your feature
file data:

11.1 Commands

 Feature-folder : Generates living documentation from feature files from the file system.
» Test-assembly : Generates living documentation from a compiled SpecFlow test assembly.

» Feature-data : Generates living documentation from pre-parsed features stored in a feature data JSON file.

11.2 Synopsis

livingdoc -h|--help
livingdoc --version

livingdoc <COMMAND> [-h|--help] [command-options] [arguments]

11.3 Generating with test results

Note : You must have the LivingDoc Plugin Setup to generate LivingDoc with test results.

Here are the list of commands to use to quickly generate LivingDoc with test results from different sources which
you have stored your feature file data:

Generate the Living Documentation from SpecFlow test assembly:

livingdoc test-assembly C:\Work\MyProject.Specs\bin\Debug\netcoreapp3.l\MyProject.
—Specs.dll -t C:\Work\MyProject.Specs\bin\debug\netcoreapp3.1l\TestExecution. json

33

https://docs.specflow.org/projects/specflow-livingdoc/en/latest/LivingDocGenerator/Setup-the-LivingDocPlugin.html

SpecFlow+ LivingDoc

Generate the Living Documentation from feature files:

livingdoc feature-folder C:\Work\MyProject.Specs -t C:\Work\MyProject.
—Specs\bin\debug\netcoreapp3.1\TestExecution. json

11.4 Generating without test results

Here are the list of commands to use to quickly generate LivingDoc without test results from different sources which
you have stored your feature file data:

Generate the Living Documentation from SpecFlow test assembly:

livingdoc test-assembly C:\Work\MyProject.Specs\bin\Debug\netcoreapp3.l\MyProject.
—Specs.dll

Generate the Living Documentation from feature files:

’livingdoc feature-folder C:\Work\MyProject.Specs

11.5 Simple Options

There are a number of options with SpecFlow+LivingDoc command-line tool depending on where you have stored
your feature file data. Please check the relevant page for each method for more information.

Here are a few simple and handy ones:

Generate the Living Documentation with a custom title/header:

’livingdoc feature-folder C:\Work\MyProject.Specs --title "BookShop" ‘

Generate the Living Documentation for a specific output path:

’livingdoc feature-folder C:\Work\MyProject.Specs —--output C:\Temp\MyReport.html ‘

NOTE: If the directory given in the “—output” path does not already exist, LivingDoc CLI will automati-
cally create the output directories in the given output path.

Generate the Living Documentation with work item prefix and work item URL template:

livingdoc feature-folder C:\Work\MyProject.Specs —--work-item-prefix WI --work-item-—
—url-template https://dev.azure.com/specflow/BookShop/_backlogs/backlog/BookShop
—%20Team/Stories/?workitem={id}

34 Chapter 11. Using the CLI tool

cHAPTER 12

livingdoc feature-folder

livingdoc feature-folder - Generates living documentation from feature files from the file system.

12.1 Synopsis

livingdoc feature-folder
[-—-project-language <projectLanguage>]
[-—-test-execution-json <testExecutionJson>]
[-—title <title>]
[-—project-name <project-name>]
[-—work-item-url-template <workItemUrlTemplate>]
[-—work-item-prefix <workItemPrefix>]
[--binding-assemblies <bindingAssemblyl >]
[-—output <output>]
[-—output-type <HTML|JSON>]

<featureFolder>

12.2 Arguments

<featureFolder>

Relative (from the working directory) or absolute path of the root folder containing the feature files. If the path to the
file contains a space, make sure to enclose it in quotes.

Note: If you also want to see test results in your living documentation, you MUST provide the Test Project Root folder
and not a subfolder.

12.3 Options

e ——project-language <projectLanguage>

35

SpecFlow+ LivingDoc

The language used in your feature files. See Gherkin languages.

-t |--test-execution-json <testExecutiondJson>

Relative (from the working directory) or absolute path of the test execution JSON files generated by the
SpecFlow.Plus.LivingDocPlugin during test execution.

NOTE: 1If you used the SpecFlow+ Runner with its parallel execution features you may end up with
multiple JSON files.You can include multiple JSON files separated by a space in the command-line tool
as per below

-t |-—test-execution-json <testExecutiondson_1 testExecutionJdson_2 ... >
OR

Use a wild card (*) to include them all:

-t |-—test-execution-json <testExecutiondsonx>

Check this guide for further info on this subject.

—-binding-assemblies <bindingAssemblyl [bindingAssembly2 ...]>

Relative (from the working directory) or absolute path of the SpecFlow binding assemblies separated by space.
The <TestAssembly> does not have to be specified as a binding assembly because it is always scanned for
SpecFlow bindings.

——output <output>

Relative (from the working directory) or absolute path to the generated output file. Default value: LivingDoc.
html

NOTE: If the directory given in the “—output” path does not already exist, LivingDoc CLI will automati-
cally create the output directories in the given output path.

The last element in a path ending in a slash or backslash is treated as a directory (not a file name),if a
directory with the same name does not exist.For example, report in —output ./out/out2/report/ is treated
as a directory if it does not exist yet. However, if a directory named report does exist in the path, then
report is treated as a directory regardless of the path ending in a slash/backslash or not.

——output-type <HTML|JSON>

The type of output file to be generated. The HTML output is the living documentation report. The JSON output
contains the pre-parsed feature data optionally extended with further information (test execution results, binding
information, etc.). Default value: HTML

—-work-item-prefix <workItemPrefix>

The name of the special tag you mark the scenarios with to link them to the corresponding work items.

——work—-item-url-template <workItemTemplate>

The URL template to use to generate the external links. e.g: https://dev.azure.com/fabrikam/
FabrikamProj/_workitems/edit/{id}

36

Chapter 12. livingdoc feature-folder

https://docs.cucumber.io/gherkin/reference/#overview
https://docs.specflow.org/projects/specflow-runner/en/latest/Usage/Parallel-Execution-Features.html
https://docs.specflow.org/projects/specflow-livingdoc/en/latest/Guides/Merging-Multiple-test-results.html
../../Viewing/Linking.html#linking-to-external-alm-systems-in-livingdoc-generator

SpecFlow+ LivingDoc

e ——title <title>

The title/header of the generated document. Default value: The root folder node’s name.

* ——project-name <project-name>

This name is used by the root node in the tree. Default value: The name of the folder containing the feature files.

12.3. Options 37

SpecFlow+ LivingDoc

38 Chapter 12. livingdoc feature-folder

cHAPTER 13

livingdoc test-assembly

livingdoc test-assembly - Generates living documentation from a compiled SpecFlow test assembly.

13.1 Synopsis

livingdoc test-assembly
[--project-language <projectLanguage>]
[-t]|-—test—-execution-json <testExecutionJson>]
[--title <title>]
[-—-project—-name <project-name>]
[-—work-item—url-template <workItemUrlTemplate>]
[-—work-item-prefix <workItemPrefix>]
[--binding-assemblies <bindingAssemblyl >]
[-o|——output <output>]
[-—output-type <HTML|JSON>]

<testAssembly>

13.2 Arguments

<testAssembly>
Relative (from the working directory) or absolute path of the SpecFlow test assembly.

*If the path to the file contains a space, make sure to enclose it in quotes.

13.3 Options

¢ ——project-language <projectLanguage>

The language used in your feature files. See Gherkin languages.

39

https://docs.cucumber.io/gherkin/reference/#overview

SpecFlow+ LivingDoc

-t |-—test-execution-json <testExecutiondJson>

Relative (from the working directory) or absolute path of the test execution JSON files generated by the
SpecFlow.Plus.LivingDocPlugin during test execution.

NOTE: If you used the SpecFlow+ Runner with its parallel execution features you may end up with
multiple JSON files. You can include multiple JSON files separated by a space in the command-line tool
as per below

-t |-—-test-execution-json <testExecutiondson_1 testExecutionJdson_2 ... >
OR

Use a wild card (*) to include them all:

-t |-—-test-execution-json <testExecutionJsonx>

Check this guide for further info on this subject.

—-binding-assemblies <bindingAssemblyl [bindingAssembly2 ...]>

Relative (from the working directory) or absolute path of the SpecFlow binding assemblies separated by space.
The <TestAssembly> does not have to be specified as a binding assembly because it is always scanned for
SpecFlow bindings.

-o|—-—output <output>

Relative (from the working directory) or absolute path to the generated output file. Default value: LivingDoc.
html

NOTE: If the directory given in the “—output” path does not already exist, LivingDoc CLI will automati-
cally create the output directories in the given output path.

The last element in a path ending in a slash or backslash is treated as a directory (not a file name),if a
directory with the same name does not exist.For example, report in —output ./out/out2/report/ is treated
as a directory if it does not exist yet. However, if a directory named report does exist in the path, then
report is treated as a directory regardless of the path ending in a slash/backslash or not.

——output-type <HTML|JSON>

The type of output file to be generated. The HTML output is the living documentation report. The JSON output
contains the pre-parsed feature data optionally extended with further information (test execution results, binding
information, etc.). Default value: HTML

——work—-item-prefix <workItemPrefix>

The name of the special tag you mark the scenarios with to link them to the corresponding work items.

——work—item-url-template <workItemTemplate>

The URL template to use to generate the external links. e.g: https://dev.azure.com/fabrikam/
FabrikamProj/_workitems/edit/{id}

40

Chapter 13. livingdoc test-assembly

https://docs.specflow.org/projects/specflow-runner/en/latest/Usage/Parallel-Execution-Features.html
https://docs.specflow.org/projects/specflow-livingdoc/en/latest/Guides/Merging-Multiple-test-results.html
../../Viewing/Linking.html#linking-to-external-alm-systems-in-livingdoc-generator

SpecFlow+ LivingDoc

e ——title <title>

The title/header of the generated document. Default value: The root folder node’s name.

* ——project-name <project-name>

This name is used by the root node in the tree. Default value: The name of the SpecFlow test assembly.

13.3. Options a

SpecFlow+ LivingDoc

42 Chapter 13. livingdoc test-assembly

cHAPTER 14

livingdoc feature-data

livingdoc feature-data - Generates living documentation from pre-parsed features stored in a Feature Data
JSON file.

14.1 Synopsis

livingdoc feature-data
[-t|-—test—-execution-json <testExecutionJson>]
[-—title <title>]
[-—work—-item-url-template <workItemUrlTemplate>]
[-—work-item-prefix <workItemPrefix>]
[-—binding-assemblies <bindingAssemblyl >]
[-o|——output <output>]
[-—output-type <HTML|JSON>]

<featureDatadson>

14.2 Arguments

<featureDatadJdson>

Relative (from the working directory) or absolute path of the Feature Data JSON. If the path to the file contains a
space, make sure to enclose it in quotes.

The Feature Data JSON is different from the TestExecution.json generated by the SpecFlow.Plus.LivingDocPlugin.
You can create a Feature Data JSON with running the LivingDoc CLI and using the ——output—-type JSON option.
This can be helpful if you have a multiple step pipeline where you want to first generate the the Feature Data JSON
and in a later step further enhance it with a TestExecution.json.

43

SpecFlow+ LivingDoc

14.3 Options

-t |-—-test-execution-json <testExecutiondson>

Relative (from the working directory) or absolute path of the test execution JSON files generated by the
SpecFlow.Plus.LivingDocPlugin during test execution.

NOTE: If you used the SpecFlow+ Runner with its parallel execution features you may end up with
multiple JSON files.You can include multiple JSON files separated by a space in the command-line tool
as per below:

-t |-—-test-execution-json <testExecutiondson_1 testExecutionJdson_2 ... >
OR

Use a wild card (*) to include them all:

-t |-—-test-execution-json <testExecutionJsonx>

Check this guide for further info on this subject.

—-binding-assemblies <bindingAssemblyl [bindingAssembly2 ...]>

Relative (from the working directory) or absolute path of the SpecFlow binding assemblies separated by space.
The <TestAssembly> does not have to be specified as a binding assembly because it is always scanned for
SpecFlow bindings.

—-o|——output <output>

Relative (from the working directory) or absolute path to the generated output file. Default value: LivingDoc.
html

NOTE: If the directory given in the “—output” path does not already exist, LivingDoc CLI will automati-
cally create the output directories in the given output path.

The last element in a path ending in a slash or backslash is treated as a directory (not a file name),if a
directory with the same name does not exist.For example, report in —output ./out/out2/report/ is treated
as a directory if it does not exist yet. However, if a directory named report does exist in the path, then
report is treated as a directory regardless of the path ending in a slash/backslash or not.

——output-type <HTML|JSON>

The type of output file to be generated. The HTML output is the living documentation report. The JSON output
contains the pre-parsed feature data optionally extended with further information (test execution results, binding
information, etc.). Default value: HTML

—-—-work-item-prefix <workItemPrefix>

The name of the special tag you mark the scenarios with to link them to the corresponding work items.

—--work—-item-url-template <workItemTemplate>

The URL template to use to generate the external links. e.g: https://dev.azure.com/fabrikam/
FabrikamProj/_workitems/edit/{id}

44

Chapter 14. livingdoc feature-data

https://docs.specflow.org/projects/specflow-runner/en/latest/Usage/Parallel-Execution-Features.html
https://docs.specflow.org/projects/specflow-livingdoc/en/latest/Guides/Merging-Multiple-test-results.html
../../Viewing/Linking.html#linking-to-external-alm-systems-in-livingdoc-generator

SpecFlow+ LivingDoc

e ——title <title>

The title/header of the generated document. Default value: The root folder node’s name.

14.3. Options 45

SpecFlow+ LivingDoc

46 Chapter 14. livingdoc feature-data

cHAPTER 15

Azure DevOps Extension

Once you have generated your documentation using the SpecFlow+ build step
1 - Select Overview ISpecFlow+ from the Azure DevOps menu to view the documentation.
2 - Use the drop-down at the top of the page to select your repository.

3 - Use the drop-down next to it to select the branch. You can also choose pull requests from the branch selector. Once
you have selected a build, the date of the build is displayed at the top.

Note: If the date shown here is older than your last build, this may indicate that the SpecFlow+ build step failed. This
can happen if the build task fails to update the cache. If this occurs, manually queue a new build, which should refresh
the cache.

4 - The “Test results” toggle displayed here gives you the option to hide or show the test execution results in LivingDoc.

5 - The feature explorer depicts the structure of your specifications. Blue text entries represent features and scenarios
while black text entries are based on the file structure of your project.

6 - A summary of the execution results are display for every folder in the feature tree. There are three different statuses
defined here; Passed,Failed, and Other, read more about them /ere.

7 - You can download your Living Documentation from Azure DevOps as a stand-alone HTML file to share it with
team members who do not use AzureDevOps.

Note: The downloaded Living Documentation will not have a Repository selector, nor a Branch selector. It will contain
the data from your selected Repository and Branch.

8 - This is the keyword lookup function, which allows you to search for keywords in LivingDoc, for more details check
out the dedicated page for this function.

9 - Filters to add to the keyword lookup function.

10 - This open editor button allows you directly edit your feature files from within the AzureDevOps envirnoment.

47

SpecFlow+ LivingDoc

©J Azure DevOps
B seecriowplus.Demo +

B overview

= Summary

[H Dashboards

8 wiki

specrlows Demo]
B soarss

Repos

@ ripeiines
A Testpians
B Anifacts

SpecFlowPlusDemo / Oven

SpecFlow+ LivingDoc + —JJEll
© Bookshop v I¥ master v

Living Documentation Analytics

% Filter by Keyword 4“

i O - @

™ BookShop.AcceptanceTests 8 Passed @0 Faied
v Features B | ocrusea @ories

> % Setup Testenvironment © 1 Passed @0 Failed

> ™ Shopping Cart ©4Psssed @0 Failed

0Others

00thers

00thers

00thers

- CEUPTT——

@ Cheapest 3 books should be listed on the home screen

@ Cheapest 3 books should be listed on the home scre:

@ Cheapest 3 books should be listed on the home screen (table syntax)
v @ Displaying book details

© The author, the title and the price of a book can be seen
v @ Searching for books

© Title should be matched

® Author should be matched

© Space should be treated as multiple OR search

© Search result should be ordered by book title

@ Simple search (scenario outline syntax)

s a potential customer

L
=

m

@ Feature: Searching for books £ [Open Editor

I want to search for books by a simple phrase
So that T can easily allocate books by something I remember from them

Background:

Given the following books

Author
Martin Fowler
Eric Evans
Ted Pattison

Gojko Adzic

Title
Analysis Patterns

Domain Driven Design

Inside Windows SharePoint Services

Bridging the Communication Gap

@ Scenario: Title should be matched 1= 732ms 1

 When I search for books by the phrase ‘Domain’

+/ Then the list of found books should contain only: 'Domain Driven Design'

> Note: Code comments are intentionally not displayed in LivingDoc to avoid polluting the document.

Click on a scenario or feature (blue text) in the feature explorer to display the documentation generated for
that scenario or feature on the right column, this is the test execution results page, read more about it here.

48

Chapter 15. Azure DevOps Extension

cHAPTER 16

Generator - CLI Tool

Once you have generated your living documentation file using SpecFlow+LivingDoc command-line tool, you will see
a new file labelled LivingDoc.html in your chosen output directory.

Open the HTML file using your favorite browser:

1 - This is the keyword lookup function which allows you to search for keywords in LivingDoc, for more details check
out the dedicated page for this function.

2 - The “Test results” toggle displayed here gives you the option to hide or show the test execution results in LivingDoc.

3 - A summary of the execution results are display for every folder in the feature tree. There are three different statuses
defined here; Passed,Failed, and Other, read more about them /ere.

4 - The feature explorer depicts the structure of your specifications. Blue text entries represent features and scenarios
while black text entries are based on the file structure of your project.

Click on a scenario or feature (blue text) in the feature explorer to display the documentation generated for that scenario
or feature on the right column, this is the test execution page, read more about it here.

5 - These are filter options to add to the keyword lookup function.

49

SpecFlow+ LivingDoc

BookShop.AcceptanceTests

1 Jan 8 2021, 11:48 AM GMT+1

o

Living Documentation Analytics

S Filter by Keyword {
i n—' Test \'Esultso As a potential customer

I want to search for books by a simple phrase

@ Feature: Searching for books =

Result

w BookShop.AcceptanceTests ® 8 Passed @ 0 Failed @ 0 Others S0 that I can easily allecate books by something I remember from them
v Features n_ ® 8 Passed @ 0 Failed 0 Others Background:
> Setup Testenvironment ® 1 Passed @ 0 Failed 0 Others Given the following books
> Shopping Cart ® 4 Passed @ 0 Failed ® 0 Others Author Title
(\’ @ Displaying Home Screen Martin Fowler Analysis Patterns
@ Cheapest 3 books should be listad on the home screen Eric Evans Domain Driven Design

@ Cheapest 3 books should be listed on the home screen (list syntax) Ted Pattison Inside Windows SharePaoint Services

@ Cheapest 3 books should be listed on the home screen (table syntax) Gojko Adzic Bridging the Communication Gap

v @ Displaying book details
@ The author, the title and the price of a book can be seen el o | s

v @ Searct for book:
OSemeiip Trkme @ Scenario: Title should be matched 15 732ms

@ Title should be matched
@ Author should be matched ~" When | search for books by the phrase '‘Domain’
@ Space should be treated as multiple OR search

~ Then the list of found beoks should contain only: 'Domain Driven Design’
@ Search result should be ordered by book title

> Note: Code comments are intentionally not displayed in LivingDoc to avoid polluting the document.

Click on a scenario or feature (blue text) in the feature explorer to display the documentation generated for
that scenario or feature on the right column, this is the test execution results page, read more about it here.

50 Chapter 16. Generator - CLI Tool

cHAPTER 17

Test results

By clicking on a scenario or feature (blue text) in the feature explorer, the right column of LivingDoc updates with the
test execution results of that scenario or feature.

BookShop.AcceptanceTests

AM GMT+1

5 generated Jan 14, 2021, 0

Living Documentation Analytics

< &) @automated @WI9

5 Filter by Keyword Filter by ~ Scenario Result
@ Feature: Book details
+ — Test results o
As a potentizl customer
@®ap d @1 Failed 0 Oth I want to see the details of a book
~ [BookShop.AcceptanceTests asse elle ere So that I can better decide to buy it.
~ [0 Features @ 4passed @ 1Failed @ 0 Others
Background:
> Setup_Testenvironment @ 1 Passed @O0 Failed 0 Others
Given the following books
> @ Book details
Author Title Price
> @ Home Screen .
Martin Fowler Analysis Patterns 50.20
> @ searching for books Eric Evans Domain Driven Design 4634
~ @ Shopping Cart Ted Pattison Inside Windows SharePoint Services 3149
@ Qverview should show total number of items and total price of shopping cart Gojko Adzic Bridging the Communication Gap 2475

@ Initially the shopping cart should be empty

© Adding books to shopping card should be possible C @W0 = @aut t = @WI9
@ @automated @WI9

@ Adding the same book to shopping cart again should increase quantity

@ Scenario: The author, the title and the price of a book can be seen
© Removing books from shopping cart should be possible
@ Quantity of a book should be changeable ~ When | open the details of 'Analysis Patterns’

@ Setting quantity of book to 0 should remove book from shopping cart
~ Then the book details should show

Author Title Price

Martin Fowler Analysis Patterns 50.20

Here is a detailed overview of all the features here:

51

SpecFlow+ LivingDoc

17.1 Test execution status

The state of test execution is defined as per following:

Q Scenario: Shopping cart should show total number of items and total price
¢ Passed

© Scenario: Adding the same book to shopping cart again should increase quantity
* Failed

Scenario: Books can be placed into shopping cart
¢ Other

— Not executed
— Skipped
— A step binding is missing

— A step was marked as Pending

17.2 Viewing multiple execution results

When a scenario or a scenario outline example row has been executed multiple times during a test execution the
following indicator is shown:

The details of the executions can be seen by hovering over the triangle icon:

G Scenario: The author, the title and the

tt

This scenano was executed 4 times and 3 failed

Aunthor Title Pri

17.3 Step execution status

The state of step execution can be the following:

+ When I enter the shop
* Passed
XA Then the home screen should show the book "Bridging the Communication Gap”
~ Error Message
The method or operation is nat implemented.
¢ Failed
And the home screen should show the book "Inside Windows SharePeint Services’
k" i "Domain Driven Design’
Mot executed due to previous error
® Other iaimniiim cimine T B Aaimninad O owrs

— Not executed (the Scenario was not selected for execution)
— Not executed due to previous error

— No step definition found

52 Chapter 17. Test results

SpecFlow+ LivingDoc

— Pending step definition

— Step level execution result is not available (an old version (<v3.4.133) of the LivingDocPlugin is used for
the generation)

17.4 Test result aggregation

Individual test execution results are available on different levels. This can be Steps, Scenarios, examples of Scenario
Outlines and Features. The aggregation to each higher level is done by the following logic:

e Passed: all executions have at least one “Passed” or were “Others”
¢ Failed: at least one execution has “Failed”

¢ Others: all executions have the state “Others”

17.5 Previewing Scenarios Outlines with data values

Gherkin scenarios often use tables to store a series of test values that are referenced using placeholders in the Gherkin
steps.

LivingDoc allows you to easily toggle between these values to easily view the results and puts them in an easy to
understand table format:

Note the the two placeholders in the below example are < books > and < search phrase >

17.6 Other tools and options

Now that you have understood how to read your test-execution results, make sure to check the Enhancement in
LivingDoc section for a complete list of features and options in LivingDoc.

17.4. Test result aggregation 53

SpecFlow+ LivingDoc

54 Chapter 17. Test results

cHAPTER 18

Analytics

The second tab on SpecFlow’s LivingDoc gives you an overall overview of all execution results in Features, Scenarios
and steps. This is available both in the LivingDoc Azure DevOps extension and the LivingDoc Generator:

SpecFlow# LivingDoc +

© Bockshop v~ I master

Living Decumentation

Features
100.0%
8 8
PASSED
Steps
\|
96.8%
62 60

PASSED

used Step Definitions
. e

Are you missing something? Let us know!

0.0%
0

FAILED

00%
0

FAILED

OTHERS

SKIPPED

Scenarios

100.0% 0.0%
18 18 0
PASSED FAILED

2 0 0

NOT EXECUTED PENDING UNBOUND

OTHERS

This tab also shows you any Unused Step Definitions, please check the relevant documentaion for this section.

55

SpecFlow+ LivingDoc

56 Chapter 18. Analytics

cHAPTER 19

Unused Step Definitions

Use the CLI tool to generate LivingDoc report which also includes Unused step Definition report under the analytics
tab. Scope handling included.

You can use this report to find unused code in the automation layer, as it will list the unused bindings from your test
assembly/binding assemblies.

Steps appearing under the Unused Step Definitions section are steps that exist in the automation layer but are not used
in any feature files.

19.1 Usage

Add the optional ——binding-assemblies option to the command line tool to specify the assemblies you want to
scan. Glob patters are supported e.g.: MyProject/+*/MyBindings.dll.

If you have both the feature files and step definitions in the same test assembly, you don’t have to explicitly specify
the -——binding-assemblies option. See an example below.

If a Step Definition appears under the Unused Step Definitions, you should check if all of the Step Definition Attributes
are used. Any unused Step Definition Attribute will be reported as Unused Step Definition. Example:

Feature: Calculator

Scenario: Add two numbers
Given the first number is 50
And the second number is 70
When the two numbers are added
Then the result should be 120

[When ("the two numbers are added")]
[When ("we sum the two numbers")]
public void WhenTheTwoNumbersAreAdded ()
{

(continues on next page)

57

https://docs.specflow.org/projects/specflow/en/latest/Bindings/Scoped-Step-Definitions.html
https://docs.specflow.org/projects/specflow/en/latest/Bindings/Step-Definitions.html#supported-step-definition-attributes

SpecFlow+ LivingDoc

(continued from previous page)

/7

The Step Definition Attribute with Regex we sum the two numbers will be reported as Unused Step Definition,
because it is not used in any of the Feature files.

19.2 Viewing Unused Step Definition Report

You can find it on the Analytics tab of the Living Documentation under the Unused Step Definitions section.
* No data found for the report

SpecFlow+ LivingDoc &

© Bookshop v §° master v [3 generated 24 Nev
Living Documentation
Features Scenarios
100.0% 00% 00% 100.0% 0.0% 0.0%
8 8 0 0 18 18 0 0
PASSED FAILED OTHERS PASSED FAILED OTHERS
Steps
\|
96.8% 00% 0.0% 3.2% 0.0% 0.0%
62 60 0 0 2 0 0

PASSED FAILED SKIPPED NOT EXECUTED PENDING UNBOUND

Unused Step Definitions

* No unused step definitions - All step definitions are used

v Unused Step Definitions ()

Every step definition is used in at least one scenario

* Some step definitions are not used

58 Chapter 19. Unused Step Definitions

SpecFlow+ LivingDoc

~ Unused Step Definitions @)
Given

the following book with id (%) BookSteps

g expectedTitle) HomeSteps

GivenHomeScreenlsEmpty(HomeSteps

the shop is closed ShoppingCartsteps
When

| open the preview of {(%)" Bc

I remove the search criteria Searchste)

I remove the book (¥}’ from the shopping cart ShoppingCartSteps

Then

the book preview should show BookS

the home screen should not be empty Ho

Generic

I proceed to checkout ShoppingCartSteps

19.3 Examples

19.3.1 feature-folder command

¢ Collect Unused Step Definitions from a binding assembly using feature-folder command:

livingdoc feature-folder C:/Work/MyProject/Features --binding-assemblies "C:/Work/
—MyProject/bin/Debug/MyBindings.dl1l"

Collect Unused Step Definitions from multiple binding assemblies using feature-folder command:

livingdoc feature-folder C:/Work/MyProject/Features --binding-assemblies "C:/Work/
—MyProject/bin/Debug/MyBindings.dll" "C:/Work/MyProject/bin/Debug/
—MyStepDefinitions.dl1l"

19.3.2 feature-data command

¢ Collect Unused Step Definitions from a binding assembly using feature—data command:

livingdoc feature-data C:/Work/FeatureData.json --binding-assemblies "C:/Work/
—MyProject/bin/Debug/MyBindings.dl1l"

Collect Unused Step Definitions from multiple binding assemblies using feature—data command:

livingdoc feature-data C:/Work/FeatureData.json --binding-assemblies "C:/Work/
—MyProject/bin/Debug/MyBindings.dl11" "C:/Work/MyProject/bin/Debug/
—MyStepDefinitions.dl1l"

19.3.3 test-assembly command

* Collect Unused Step Definitions from the test assembly using the test-assembly command:

livingdoc test-assembly C:/Work/MyProject/MyAssembly.dll

19.3. Examples 59

SpecFlow+ LivingDoc

In this case the MyAssembly.d11 will be scanned automatically to find Unused Step Definitions. In other
words, you don’t need to specify ——binding-assemblies "C:/Work/MyProject/MyAssembly.
dl1" explicitly.

e Collect Unused Step Definitions from the test assembly and from a binding assembly using the
test-assembly command:

livingdoc test-assembly C:/Work/MyProject/MyAssembly.dll —--binding-assemblies "C:/
—Work/MyProject/bin/Debug/MyBindings.dll"

e Collect Unused Step Definitions from the test assembly and from binding assemblies using the
test—-assembly command:

livingdoc test-assembly C:/Work/MyProject/MyAssembly.dll --binding-assemblies "C:/
—Work/MyProject/bin/Debug/MyBindings.dl11" "C:/Work/MyProject/bin/Debug/
—MyStepDefinitions.dl1l"

In this case 3 assemblies will be scanned:
- MyAssembly.dll
— MyBindings.dll

— MyStepDefinitions.dll

19.4 Limitations

Currently only Regular expressions in attributes is supported. Learn more about Step Matching Styles.

60

Chapter 19. Unused Step Definitions

https://docs.specflow.org/projects/specflow/en/latest/Bindings/Step-Definitions.html#regular-expressions-in-attributes
https://docs.specflow.org/projects/specflow/en/latest/Bindings/Step-Definitions.html#step-matching-styles-rules

cHAPTER 20

Finding keywords in LivingDoc

The number of scenarios in a project can grow very quickly, so finding the data you are looking for is important.
SpecFlow+ LivingDoc allows you to find keywords in folder names, tags, titles (features, scenarios, scenario outlines),
descriptions and steps.

20.1 Finding a keyword in the entire documentation

To find a keyword within your entire documentation:
1 - Enter your keyword in the Filter field. As you type, the results are updated in the feature explorer.

2 - Folders, features and scenarios containing the keyword in the titles, tags, descriptions or steps are displayed in
blue. Node titles displayed in grey do not contain the keyword, but at least one child or parent item is containing the
keyword. All other nodes (i.e. with no hits) are hidden in the tree.

3 - Click on an entry in the tree to display that entry. The keyword is highlighted yellow in the content.

61

SpecFlow+ LivingDoc

Living Documentation Analytics

~ BookShop.AcceptanceTests
v Features
~ Setup Testenvironment
v @ Prepare book catalog
@ Setup basic example books
~ Shopping Cart
~ @ Adding books to the shopping cart

@ Books can be placed into shopping cart

® & Passed

@ 8 Passed

@ 1 Passed

@ 4 Passed

o Result

X

Test results 0

® 0 Failed

@ 0 Failed

® 0 Failed

® 0 Failed

0 Qthers

0 Others

0 Others

0 Others

@ Adding the same book to shopping cart again should increase quantity

~ @ Displaying the shopping cart

@ Shopping cart should show total number of items and total price

@ The shopping cart should be initially empty
~ @ Editing the shopping cart

@ Quantity of a book can be changed

& Changing quantity of book to 0 should remove book from shopping cart

~ @ Removing books from the shopping cart

@ A type of book can be entirely removed from the shopping cart

> @ Displaying Home Screen

20.2 Using filters

20.2.1 Keyword Filter

@ Feature: Searching for books

As a potential customer
I want to search for books by a simple phrase
So that I can easily allocate books by something I remember from them

Background:

Given the following books
Author Title
Martin Fowler Analysis Patterns
Eric Evans Domain Driven Design
Ted Pattison Inside Windows SharePoint Services

Gojko Adzic Bridging the Communication Gap

G @wn @w3

@ Scenario: Title should be matched 1= 73

~ When | search for books by the phrase ‘Domain’

~ Then the list of found books should contain only: 'Domain Driven Design'

O awl @wia

B

@ Scenario: Author should be matched 1= 707ms

You can add a filter so that your keywords is only looked for in specific folder names, titles, descriptions, steps or tags.

To change the filter:
1 - Open the Filter by drop-down.

2 - Select the filters you want to apply from the list. You can select multiple filters.

3 - Enter your keyword.

62

Chapter 20. Finding keywords in LivingDoc

SpecFlow+ LivingDoc

Bookshop
@By

Living Documentation

Analytics

Y books Scenario Result ~ X
} [Feature Titles Test resuits (@D
v B8 BookShop.Accepti [seenario Titles (8Passed @ OFailed ® 0Others
~ B8 Features (. Folder Names |8Passed @ OFailed ® 0Others
v Setup Test D Descriptions 11 Passed @ 0 Failed 0 Others
~ @ Prepar O steps
@ Setu O e
~ B Shopping sar 14Passed @OFailed ®0Others

~ @ Adding books to the shopping cart

@ Books can be placed into shopping cart

@ Adding the same book to shopping cart again should increase quantity
~ @ Displaying the shopping cart

@ Shopping cart should show total number of items and total price

@ The shopping cart should be initially empty
~ @ Editing the shopping cart

@ Quantity of a book can be changed

@ Changing quantity of book ta 0 should remave book from shopping cart

20.2.2 Scenario status filter

< @ Feature: Searching for books =

As a potential customer
I want to search for books by a simple phrase
So that I can easily allocate books by something I remember from them.

Background:

Given the following books
Author Title

Martin Fowler Analysis Patterns

Eric Evans Domain Driven Design

Ted Pattison Inside Windows SharePoint Services

Gojko Adzic Bridging the Communication Gap

< ewl @ws

@ Scenario: Title should be matched 1<

~ When | search for books by the phraze ‘Domain’

~ Then the list of found books should contain only: 'Domain Driven Design’

You also have the option to filter your results based on the status of the test, e.g passed,failed, or others.

Bookshop

B

oM GMT+1

Living Documentation Analytics

< @ Feature: Searching for books =

Y books Filter by X
} [Passed e As a potential customer
. I want to search for books by a simple phrase
« B BookShop AcceptanceTests) Failed Mhers = So that I can easily allocate books by something 1 remember from them
Others
~ B Features g Ithers Background:
v B8 Setup Testenvironment e fihers Given the following books
~ @ Prepare book catalog Author Title
@ Setup basic example books Martin Fowler Analysis Patterns
~ B Shopping Cart ®4Pased @ OFailed @ 0 Others EricEvans Domain Driven Design

@ Adding books to the shopping cart

@ Books can be placed into shopping cart

@ Adding the same book to shopping cart again should increase quantity
v @ Displaying the shopping cart

@ Shopping cart should show total number of items and total price

@ The shopping cart should be initially empty
~ @ Editing the shopping cart

@ Quantity of a book can be changed

@ Changing quantity of book to 0 should remove book from shopping cart

Ted Pattison Inside Windows SharePoint Services

Gojko Adzic Bridging the Communication Gap

C awn ews

@ Scenario: Title should be matched 1=

~" When | search for books by the phrase ‘Domain’

~ Then the list of found books should contain only: ‘Domain Driven Design’

20.2. Using filters

63

SpecFlow+ LivingDoc

64 Chapter 20. Finding keywords in LivingDoc

CHAPTER 2 1

Embedding Images & Markdown

You can include markdown code in your feature files with the standard Markdown features such as bold,italic, lists
etc.

>Note: SpecFlow+LivingDoc supports the mark down syntax by showdown.js.

You can also use markdown to embed images in your feature files. These images will then be displayed when viewing
LivingDoc

21.1 Embedding Images

When embedding images, the path to the image can be specified as a relative or absolute path. You can also embed
images stored externally, such as on a website. Paths are relative to the location of the feature file.

Here are the possible ways to embed to images in feature files:

21.1.1 Embedding an image in the same directory as the feature file

' [Alt text] (image.png)

21.1.2 Embedding an image in a sub-directory

I'[Alt text] (folder/image.pnqg)

21.1.3 Embedding an image with an absolute reference

' [Alt text] (/folder/image.png)

65

http://demo.showdownjs.com/

SpecFlow+ LivingDoc

21.1.4 Embedding an image relative to the parent directory

!'[Alt text] (../image.png)

21.1.5 Embedding an external image

''[Alt text] (HTTPS://encrypted-tbnlO.gstatic.com/images?g=tbn:ANd9GcQyBVEOUKugTT3yaJz7fprlnV]
21.2 Example

21.2.1 Links

The following code contains a link to an image in the Feature description:

Note the link must be between the “Feature:” row and the first scenario.

Feature: Calculator
!'[Calculator] (https://specflow.org/wp—-content/uploads/2020/09/calculator.png)
In order to avoid silly mistakes
As a math idiot
I want to be told the sum of two numbers
@mytag
Scenario: Add two numbers
Given the first number is 50
And the second number is 70
When the two numbers are added
Then the result should be 120

This is the resulting output in SpecFlow+ LivingDoc:

66 Chapter 21. Embedding Images & Markdown

SpecFlow+ LivingDoc

SpecFlowCalculator.Specs

1, 10:05 AM GMT+1

[3 generated Jan 14,

Living Documentation Analytics

< @ Feature: Calculator

S Filter by Keyword Filter by
{ Test results D
N SpecFlowCalculator.Specs ® 1Passed @ 0Failad © 0Others
hd Features ® 1 Passed @ 0Failed @ 0Others

~ @ Calculator

@ Add two numbers

In order to avoid silly mistakes
As a math novice
| want to be told the sum of twe numbers

Link to a feature: Calculator
Further read: Learn more about how to generate Living Documentation

@ @m ytag

@ Scenario: Add two numbers

~" Given the first number is 50

~ And the second numberis 70
~" When the two numbers are added

+" Then the result should be 120

21.2.2 Text

The following code demonstrates the use of Markdown syntax for arbitrary text within a feature file.

Note: Asterisks cannot be used as bullet points below the scenario declarations becuase they are a gherkin keyword
(see here).

Feature: Calculator

Some text:
- List item 1
- List item 2

@mytag
Scenario: Add two numbers

Some more text:

- Scenario text 1
- Scenario text
- Scenario text 3

N

Given the first number is 50
And the second number is 70
When the two numbers are added
Then the result should be 120

21.2. Example 67

https://docs.specflow.org/projects/specflow/en/latest/Gherkin/Gherkin-Reference.html#id1

SpecFlow+ LivingDoc

This is the resulting output in SpecFlow+ LivingDoc:

Living Documentation Analytics

S Filter by

~ Features
~ Calculator

Add two numbers

Generated by SpecFlow+LivingDoc - Give us feedback!

<
by W Feature: Calculator

Some text:

* Listitem 1
* Listitem 2

7 @mytag
Scenario: Add two numbers
Some more text:

* Scenario text 1
* Scenario text 2
* Scenario text 3

Given the first number is 50

And the second number is 70
When the two numbers are added

Then the result should be 120

68

Chapter 21. Embedding Images & Markdown

CHAPTER 22

Linking within LivingDoc

22.1 Internal linking between features and scenarios

You can link your features by using their file names in the feature or scenario description. The location of the linked
feature file is defined by your folder structure.

22.1.1 Linking a feature in the root directory

[Link text] (root/Feature.feature)

22.1.2 Linking a feature in a sub-directory

[Link text] (root/sub-directory/Feature.feature)

22.1.3 Linking a feature without link text

[] (root/Feature.feature)

If the [Link Text] is not specified, the name of the feature will be displayed by default.

22.1.4 Linking Example

The following code contains a link to a feature:

Feature: Home Screen

As a potential customer
I want to search for books by a simple phrase
So that I can easily locate books by something I remember from them

(continues on next page)

69

SpecFlow+ LivingDoc

(continued from previous page)

The search input is located on the [Home Screen] (<BookShop.AcceptanceTests/Features/
—Book Search.feature>) .

Background:
Given the following books

Author	Title
Martin Fowler	Analysis Patterns
Eric Evans	Domain Driven Design
Ted Pattison	Inside Windows SharePoint Services
Gojko Adzic	Bridging the Communication Gap

QWIS

Scenario: Title should match
When I search for books by the phrase 'Domain'
Then the list of found books should contain only 'Domain Driven Design'

Notes:

* Markdown is only supported in Feature and Scenario descriptions.If you place Markdown elsewhere, you will
receive errors when building the documentation

* The markdown syntax supported here is Showdown’s Markdown syntax. This is why angle brackets <> are
used in the link above. Showdown’s Markdown syntax requires angle brackets when there is space between
characters, notice the blank space between “Book™ and “Search” in the link.

* Notice the folder structure in the link example:
(BookShop.AcceptanceTests/Features/Book Search.feature)
root: BookShop.AcceptanceTest
sub-directory: Features
Feature.feature: Book Search.feature

This is the resulting output in SpecFlow+ LivingDoc:

70 Chapter 22. Linking within LivingDoc

https://github.com/showdownjs/showdown/wiki/Showdown%27s-Markdown-syntax

CHAPTER 23

Link to ALM systems

Features and Scenarios can be linked to external issues/tickets/work items/etc. by using Gherkin tags. These special
tags allow quick navigation from LivingDoc to your application lifecycle management (ALM) software of choice,
allowing you quick access to additional information such as status of the ticket, assigned person, and work item status.

23.1 External links in Azure DevOps

The SpecFlow+LivigDoc Azure DevOps extension makes linking to Azure DevOps work items easy.

For example, if you define a work item prefix as WI: in your Azure DevOps build step, then tags starting with this
prefix will be converted to links when parsed by LivingDoc.

For instance, @WI : 7 will create a link to work item “7” in Azure DevOps:

71

SpecFlow+ LivingDoc

¢J) @automated

@ Feature: Displaying Home Screen &

As a potential customer
I want to see the books with the best price
So that I can save money on buying discounted books.

Background:

Given the following books

Title Price
Analysis Patterns 50.20
Domain Driven Design 45.34

23.2 External Links in LivingDoc Generator

You can configure external ALM linking in the LivingDoc Generator too.
You can do this by creating external links to a specific work item in any ALM system.

For example, if you define the Gherkin tag prefix as WI and you want link to Azure DevOps then you can use the
following command to generate the documentation:

livingdoc test-assembly C:\Work\MyProject.Specs\bin\Debug\netcoreapp3.l\MyProject.
—Specs.dll --work—-item-prefix WI —--work-item-url-template https://dev.azure.com/
—specflow/BookShop/_backlogs/backlog/BookShop%20Team/Stories/?workitem={id}

or in Atlassian Jira:

—--work—item-url-template https://Jjira.atlassian.com/browse/YOURPROJECT-{id}

Then tags starting with this prefix will be converted to links when parsed by LivingDoc.

> Note: If you are using PowerShell to generate LivingDoc, you must have the ——work-item-url-template
URL in single quotes to avoid getting errors:

livingdoc test-assembly C:\Work\MyProject.Specs\bin\Debug\netcoreapp3.1l\MyProject.
—Specs.dll —--work—-item-prefix WI —--work-item-url-template 'https://dev.azure.com/
—specflow/BookShop/_backlogs/backlog/BookShop%20Team/Stories/?workitem={id}"

72 Chapter 23. Link to ALM systems

../LivingDocGenerator/Using-the-command-line-tool.html#simple-options

CHAPTER 24

Editing Feature Files in Azure DevOps

If your (feature files) are stored in Azure DevOps repositories, you can switch directly from the LivingDoc to the
source feature files and edit files directly in Azure DevOps.

> Important: This feature is only available if you picked “Feature Folder” as your source folder when configuring
the build step in AzDo, see section A.

To edit a feature file:
1 - Open the corresponding page in LivingDoc.
2 - Click on Open Editor on the top right of the page.

) @automated @WIT1

@ Feature: Adding books to the shopping cart 1= [2 Open Editor

As a potential customer
I want to collect books in a shopping cart
So that I can order several books at once.

Background:

Given the following books
Title
Analysis Patterns
Domain Driven Design
Inside Windows SharePoint Services

EBridging the Communication Gap

3 - The corresponding source feature file in your code repository is opened. You can Edit the file directly in Azure
DevOps.

73

SpecFlow+ LivingDoc

Bookstore.feature £ Edit :

Contents History Compare Blame e

1 Feature: Search by phrase

Syntax highlighting is also supported in Azure DevOps Repos for the following Gherkin languages:
* English

¢ German

Bookstore. feature

Contents Highlight changes

1 Feature: Search by phrase

2 As a shopper

3 I want to search for books with a simple phrase

4 So that i can easily |Find books based on the information I remember about them

5

6

7 Scenario: Enter search criteria

8 Given the search page is open

9 And the search field has focus

18 And the following books are in the shop

11 |Title | Author |Publisher |
12 |Blue Screens for Mumbskulls |Ben Dover | Compuscreen Publishing Ltd|
13 |World Domination |Pinky & Brain |Megalomaniac Comics |
14 |My Life as a Guniea Pig - Secrets of a Software Tester |Ben Dover | Compuscreen Publishing Ltd|
15 |Dangerous Rendezvous |Michelle Rose |Heartbreak Novels Ltd |

74 Chapter 24. Editing Feature Files in Azure DevOps

CHAPTER 25

Documentation Languages

SpecFlow+ LivingDoc parses your feature files looking for keywords, and uses these keywords to format the output.
SpecFlow+ LivingDoc supports all languages supported by the official Gherkin parser.

The language used to parse the feature files is determined in the following order:
* The language specified in the Gherkin file itself using the # language header
* The language specified in your app.config file (deprecated